
Dr. Tarek Helmy@KFUPM-ICS 1

Main Memory Management

Dr. Tarek Helmy El-Basuny

Weeks 9-10

Operating Systems ICS 431

Dr. Tarek Helmy@KFUPM-ICS

Main Memory Management

• Main duties of the Memory Management Unit,

• Memory Management Requirements:

 Relocation, Protection, Sharing, Logical Organization, Physical Organization

• What is Logical address? What is physical address?

 Logical/Virtual address: Generated by the CPU and reflects (A process’s

view of its own memory)

 Physical address: Address seen by the memory unit (stored in the Memory Address

Register)

• Address Binding/Mapping (Logical to Physical Address Translation),

• Processing Steps of a User’s Program,

• The dynamic loading & linking and their advantages,

• Swapping, Swapping affect on the context switch, Swapping time and Quantum Time,

• Contiguous and Non-contiguous Allocation with their advantages and disadvantages,

• Memory Partitions Allocation: equal and un-equal size partitioning of the main memory,

• Dynamic Partitioning: partition’s size and numbers will be dynamic,

• Fragmentation: Internal and External,

• How to minimize the Fragmentation?

 Compaction, Paging, Segmentation, Segmentation with Paging

2

Dr. Tarek Helmy@KFUPM-ICS

Memory Management Unit (MMU)

 We have seen how the processes share the CPU. How?

 Processes also share the physical/main memory. We want to know

How?

 As a fact, the OS kernel occupies a part of the main memory. For

what?

 The rest of the main memory will be shared by running processes.

 What happen if only few processes are loaded into the main

memory?

 The multiprocessing level will be less and resources will not be

maximally used.

 Hence, the OS goal is to allocate the main memory efficiently to

processes to pack as many processes as possible to increase the

concurrency level and to maximize resources utilization.

 It is recommended for the OS to partially (not Fully) load the

processes into the main memory to increase the concurrency level.

 Which pages/segments of the process should be loaded?

 Most frequently used part of the process.

3

Dr. Tarek Helmy@KFUPM-ICS

Memory Management Unit (MMU)

• The MMU is responsible for the following activities:

– Keep track of which parts of memory are currently being used and

by which processes.

– Decide which process to load when memory space becomes

available.

• A policy decision

– Maintain mappings from physical to virtual memory and vise versa.

• Through page tables

– Decide how much memory (pages/segments) to allocate to each

process.

• A policy decision

– Decide when to remove/swap out a process from the main memory

• A policy decision.

4

Dr. Tarek Helmy@KFUPM-ICS

• Relocation

– MMU decides where the process will be placed in memory when it is executed,

the programmer does not know about that.

– A process may be relocated in main memory due to swapping.

• Swapping enables the OS to have a larger pool of ready-to-execute

processes.

– Memory references in code (for both instructions and data) must be translated to

physical memory address.

• Protection

– Processes should not be able to reference memory locations of each other

without permission.

– Address references must be checked/validated at run time by hardware.

• Impossible to check addresses at compile time in programs since the

program could be relocated.

• Sharing

– OS may allow several processes to access a common portion of main memory

without compromising the protection.

– Cooperating processes may need to share access to the same data structure.

• Better to allow each process to access the same copy of the global data

rather than having their own separate copies.

Memory Management Requirements

5

Dr. Tarek Helmy@KFUPM-ICS

Memory Management Requirements

• Logical Organization

– Users write programs in modules with different characteristics

• Instruction modules are execute-only.

• Data modules are either read-only or read/write.

• Some data modules are private and others are public.

– To effectively deal with user’s programs, the OS and HW should

support a basic form of modules to provide the required protection

and sharing.

• Physical Organization

– Auxiliary memory is the long term store for programs and data .

– Main memory holds processes and data currently in use.

– Main Memory may not be available for the whole process plus its

data.

• Swapping allows various modules to be assigned the same

region of memory.

– Moving information between these two levels of memory is a major

concern of memory management unit.

6

Dr. Tarek Helmy@KFUPM-ICS

Process’s Memory Protection

• How does the OS Protect processes from each other?

• Hardware-support scheme

– Relocation (Base) register contains value of smallest

physical address.

– Limit register contains range of logical addresses –

each logical address must be less than the limit

register.

• More advantages of Base and Limit Registers.

– The limit register provides an effective way to allow

the OS size to change dynamically.

– As the OS contains some transient code and buffer

space for device drivers, if the device driver is not

commonly used, its code can be moved out and

give a space for other processes.

– The base register allows the process to be relocated

by changing the content of the base register.

– The limit register provides an effective way to allow

the process size to change dynamically so that it can

grow or shrink.

7

Dr. Tarek Helmy@KFUPM-ICS

HW address protection with base and limit registers

8

A Base and a limit resister define a logical address space of a process

Dr. Tarek Helmy@KFUPM-ICS

Process 1

• Physical address space: The address space supported by the

hardware “the address loaded into the memory address register”.

• The physical address refers to a specific location in memory, that the

hardware can support.

– Starting at address 0-F, going to address MAXsys

• Logical/Virtual address space: A process’s

view of its own memory “generated by the CPU”.

• A virtual address refers to a specific location within a process.

– Address relative to start of process’s address space

– Starting at address 0-L, going to address MAXprog

0-F

MAXsys

0-L

MAXprog

Physical and Virtual Address Space

• A Base and a Limit Registers Define a Logical Address Space

• CPU dispatcher loads the base and limit registers with the

correct values (stored in PCB) as part of the context switch.

9

Dr. Tarek Helmy@KFUPM-ICS

Logical to Physical Address Translation

• The run time mapping from Logical to Physical addresses is done by the MMU,

many methods to do such mapping, i.e. ”contiguous, paging, segments”

10

developer
Highlight

Dr. Tarek Helmy@KFUPM-ICS

Processing Steps of a User’s Program

• User’s programs go through many steps (compile, link, load) before running.

11

Dr. Tarek Helmy@KFUPM-ICS

Linking and Loading Steps

• Linking: Different parts of a process are linked

together in order to make them a runnable entity.

This can be done:

– Before execution (Static linking)

– On demand during execution (Dynamic)

• Loading: Load the linked parts into the main memory

(ready to execute). May involve address translation.

– Absolute/static, or re-locatable/dynamic

• Aspects of Loading

– Finding free memory for loading a process.

– Could be contiguous or Non-contiguous/scattered.

– Adjust addresses in the process (if required) once it

is known where the process will be loaded.

12

Dr. Tarek Helmy@KFUPM-ICS

Dynamic Linking

• Dynamic linking is the process of postponing the linking of a certain library

routine till the execution time.

• This feature is used with programming language’s and system’s library.

• Without this feature, all processes on a system need to have a copy of their

programming language’s libraries included in the executable image.

– This wastes both the disk and main memory spaces.

• With dynamic linking, stub is included in the image for each library routine.

– The Stub is a small piece of code that indicates how to locate the

appropriate memory-resident library routine or how to load the library if

the routine is not already present.

– Stub replaces itself with the address of the routine, and executes the

routine so that the next time the code segment is reached, the library

routing executed directly, incurring the cost of dynamic linking.

• Dynamic linking is particularly useful for libraries.

13

developer
Highlight

Dr. Tarek Helmy@KFUPM-ICS

Dynamic Loading

• With dynamic loading, a routine is

not loaded until it is called.

• Dynamic loading allows better

memory-space utilization.

Advantages of Dynamic Loading:

• Un-used routines never loaded into

the memory.

• Useful when large amounts of code

are needed to handle infrequently

occurring cases, such as error

routine.

main() {

f1();

}

f1() {

f2();

}

f2() {

f3();

}

Main

Memory

Loaded when called

Loaded when called

Loaded when called

14

Dr. Tarek Helmy@KFUPM-ICS

Advantages of Dynamic Linking and Loading

• Advantages of Dynamic Linking

– Supports portability: if the external module is an OS/language utility.

Executable files can use another version of the external module of

another OS/language without the need of being migrated.

– Code sharing: The same external module needs to be loaded in main

memory only once. Each process is linked to the same external module.

– Saves memory and disk space.

Advantages of Dynamic Loading:

– Un-used routines never loaded into the memory.

– Useful when large amounts of code are needed to handle infrequently

occurring cases, such as error routine.

15

developer
Highlight

developer
Highlight

developer
Highlight

developer
Highlight

Dr. Tarek Helmy@KFUPM-ICS

Time of Address Binding/Mapping

 Address binding of processes and data (Logical address to Physical

address mapping) can happen at three different stages:

– Compile time: the process will be fixed to an absolute address.

Recompilation is necessary if the starting location changes.

– Link and Load time: Codes can be linked then loaded to any

portion of memory. (Re-locatable code)

– Run time: Code can be moved to any portion of memory during its

execution.

– But it is recommended to be done during the run time to

support the relocation of processes in the main memory.

16

Dr. Tarek Helmy@KFUPM-ICS

Swapping

• Swapping allows processes to be moved from

the main memory to auxiliary memory and then

back to the main memory again for execution.

• For instances, in RR scheduling policy, when

the time quantum of a process expires, the

memory manger starts to swap-out/roll-out the

current process and swaps-in/roll-in the next

process in turn.

• In priority-based scheduling algorithms; lower-

priority process is swapped-out so higher-

priority process can be swapped-in/rolled-in and

executed.

17

Dr. Tarek Helmy@KFUPM-ICS

Swapping and Context Switch

• With swapping, context switches will be more expensive because

auxiliary memory (generally HD) is much slower than main memory.

• Swapping needs a backing store (HD) that is: Fast, large enough to

accommodate copies of all memory images for all users, and must

provide direct access to these memory images.

• The effect of address binding on swapping

– If address binding has been done at linking or loading time then the

process cannot be moved to different locations.

– If address binding has been done at running-time: It’s possible to

swap a process into a different memory space.

18

Dr. Tarek Helmy@KFUPM-ICS

Swapping & Execution/Quantum Time

• Swapping is affected by transferring rate of the HD:

• The dispatcher checks if the scheduled process’s pages are in memory or not.

• If not and there is no free memory space, then the dispatcher swaps out a

process currently in and swaps in the desired process.

• The Context-switch time is fairly high, i.e. assume: a 1 MB user process,

• HD (backing store) transfer rate = 5 MB/Sec, avg. Latency= 8 ms

• Latency: The time it takes to position the proper sector under the R/W head.

– Transferring 1MB process to/from memory takes 1MB/5MB per second + 8

millisecond = 208 ms

– Swap in and out when context switch = 208 * 2= 416 ms

• For efficient CPU utilization, we want the process execution time to be long

relative to the swap time. In RR algorithm we need time quantum be >416 ms

– Major part of any swap time is the transfer time.

• Total transfer time is directly proportional to the amount of memory

swapped. Swapping 100 KB is faster than 1 MB.

• Better to know exactly how much memory a process is using

19

Dr. Tarek Helmy@KFUPM-ICS

• Swapping frequency should be minimized because:

– It requires too much swapping time and provides too little execution for the

processes, this is called thrashing.

• Thrashing: means the CPU time is used in swapping processes in or out without

executing the processes themselves.

• Thrashing is a condition in which excessive swapping operations are taking

place.

• Swapping is affected by other factors:

• If we want to swap out a process, it must be idle not on turn to run:

– It may be waiting for I/O operation, etc.

• Modified versions of swapping are found on many OSs, i.e., UNIX & Windows.

– UNIX: Start swapping if many processes were running and were using a

threshold amount of memory.

Frequent Swapping causes Thrashing

20

Dr. Tarek Helmy@KFUPM-ICS

Contiguous and non-Contiguous Allocation of a Process

• The main memory must accommodate both OS and

various user processes. We need to allocate it in the

most efficient way.

• Main memory usually divided into two partitions:

– Resident OS, may held in either low/high memory.

– The major factor affecting this is the location of

interrupt vector.

– Since the interrupt vector is often in lower part, the

OS is also in the lower part.

– User processes then held in high memory.

• Contiguous allocation: all pages/segments of a

process (address space) are allocated together in one

chunk.

• Non-Contiguous allocation: pages/segments of the

process (address space) can be scattered everywhere

in the memory.

• What are the advantages and disadvantages of both

approaches?

21

Interrupt vector

User’s

Processes

Dr. Tarek Helmy@KFUPM-ICS

Memory Partitioning

• Partition the main memory into a set of non

overlapping regions called partitions or frames.

• Partitions/Frames can be of equal or unequal sizes.

• The OS uses a table to know about which

parts/frames of memory are available and which are

occupied.

• A hole means un-used Partition/Frames of the main

memory

– Holes of various size may be scattered

throughout memory.

• When a process arrives, it is allocated a free hole

that is large enough to accommodate it.

– The hole is split into two parts:

• One for the arriving process,

• One returned to the set of holes.

• When a process terminates, its allocated memory is

returned to the set of holes.

– Maybe merged with adjacent holes.

22

Dr. Tarek Helmy@KFUPM-ICS

Memory Partitioning & Contiguous Allocation (Example)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 9

process 2

process 9

process 10

OS OS

process 5

OS

process 5

process 2

23

Hole1

Hole 2

Dr. Tarek Helmy@KFUPM-ICS

Placement with Equal Size Partitions

 With equal-size partitions

 If there is an available partition, a process can be loaded

into that partition.

 Because all partitions are of equal size, it does not

matter which partition is used.

 If the process is too large to fit in a partition, then OS must

swap out another process or support partial allocation.

When the module needed is not present, the OS must

load that module into the process’s address space.

 If all partitions are occupied by blocked processes, OS

chooses one process to swap out to make room for the

new process.

When swapping out a process, its state changes to a

Blocked/Suspend state, and gets replaced by a new

process or a process from the Ready/Suspend queue.

 Inefficient memory utilization: Any process, no matter how small,

occupies an entire partition. The remaining hole is called

internal fragmentation.

24

developer
Highlight

Dr. Tarek Helmy@KFUPM-ICS

Placement with non-equal Size Partitions

1. Non-equal-size Partitions/Frames with multiple queues

– Assign each process to the smallest partition within

which it will fit.

– A queue for each partition size.

– Tries to minimize the problem of internal

fragmentation.

– Efficient memory utilization.

– Problem: Some queues will be empty if no

processes within a size range is present. That

means their partitions will not be used!

25

Dr. Tarek Helmy@KFUPM-ICS

• Non-equal-size Partitions/Frames with a single

queue

– To load a process into the MM, the smallest

available partition that fits the process is selected.

– The OS can skip down the queue to see whether

smaller memory requirements of some other

processes can be met.

– Increases the level of multiprocessing at the

expense of queue processing and.

– It may lead into internal fragmentation but will

be less than in equal size partitioning.

Placement with non-equal Size Partitions

26

Dr. Tarek Helmy@KFUPM-ICS

Dynamic Partitioning

 Modern OSs use dynamic partitioning,

 Partitions are of variable length and number (called Frames).

 Each process is allocated as many frames as possible according to

its working set.

 Eventually holes in between the processes (called external

fragmentation) or holes inside the last allocated frame(called internal

fragmentation) are formed in main memory.

 Must use compaction to shift processes so they are contiguous and

all free memory is in one block.

27

Dr. Tarek Helmy@KFUPM-ICS

Dynamic Partitioning: An Example

 A hole of 64K is left after loading 3 processes: not enough room for

another process.

 The OS selects P2 and swaps it out to bring in P4.

28

Dr. Tarek Helmy@KFUPM-ICS

Dynamic Partitioning: An Example

 Another hole of 96K is created

 Eventually each process is blocked. The OS swaps out P1 to bring in

again P2 and another hole of 96K is created...

 Compaction would produce a single hole of (96+96+64)= 256K

P2 swapped out P1 swapped out P2 swapped inP4 swapped in

29

Dr. Tarek Helmy@KFUPM-ICS

Placement Algorithms

• OS must decide which free block/partition to allocate to a process in order to
reduce the compaction time. The following algorithms are used:

• Best-fit algorithm

• Chooses a block/partition in the entire memory that is close enough in size
to the loaded process.

• Results in minimally sized fragments that require compaction.

• We must search the entire list unless they have been sorted by size.

• First-fit algorithm

• Starts scanning the MM from the beginning and chooses the first available
block/partition that is large enough to fit the process.

• May have many process loaded in the front end of memory that must be
scanned.

• Next-fit

• Scans the MM from the location of the last allocation and chooses the next
available block/partition that is large enough to fit the process.

• More often allocate a block of memory at the end of memory where the
largest block is found.

• Compaction is required to obtain a large block at the end of memory.

• Worst-fit

• Chooses the biggest block/partition first. Makes bigger partitions more
useful.

• Quick-fit

• Chooses a block/partition from a common-size partition list.

30

Dr. Tarek Helmy@KFUPM-ICS

Last

allocated

block (14K)

Before After

8K 8K

12K 12K

22K

18K

6K 6K

8K 8K

14K 14K

6K

2K

36K
20K

Next Fit

Free block

Allocated block

Best Fit

First Fit

Example: Placement Algorithm

alloc 16K block

Worst Fit

31

Dr. Tarek Helmy@KFUPM-ICS

Placement Algorithm: Comments

 Best-fit searches for the smallest partition: the fragment left behind is as

small as possible.

 Main memory quickly forms holes too small to hold any process:

compaction needs to be done more often.

 First-fit favors allocation near the beginning: tends to create less

fragmentation than Next-fit.

 Next-fit often leads to allocation of the largest blocks at the end of

memory.

 Worst-fit and quick-fit have still fragmentation (useless holes) problems.

32

Dr. Tarek Helmy@KFUPM-ICS

Fragmentation Manipulation

• External fragmentation

– Unused memory partitions (un-allocated partitions to processes).

• Internal fragmentation

– Unused memory locations within a partition because the allocated process may

be slightly smaller than the allocated partition. For example, consider a hole of

18,464 bytes to allocate to a process with 18,462 bytes.

– Also happen when physical memory is broken into fixed-sized large blocks, and

memory is allocated to processes in unit of block sizes.

• Fragmentation Manipulation:

– Compaction/defragmentation: re-locate memory contents to place all free

memory locations together in one large partition that can host a process.

– It is possible only if relocation is supported, and the address mapping is done at

execution time.

• After compaction, the contents of both Limit and Base registers must be modified.

– Paging: allow the logical address spaces of the process to be non-contiguous,

thus a process can be allocated a memory partition wherever it is available.

– Segmentation: divide the process logical address space into variable-sized

segments, with semantic base, i.e. (Data segment, Code segment, Tables

segment, Arrays segment, Stacks segment, etc.)

33

Dr. Tarek Helmy@KFUPM-ICS

Internal Fragmentation

• It is an overhead to

maintain the compaction

for a hole of 2 bytes.

• OS allocates a partition of size

18,464 bytes to the process of

size 18,462.

• Result in internal fragmentation

of size 2 bytes.

34

Dr. Tarek Helmy@KFUPM-ICS

External Fragmentation: Example

35

Dr. Tarek Helmy@KFUPM-ICS

Free block

Allocated block
External Fragmentation: Example

36

Dr. Tarek Helmy@KFUPM-ICS

Compacting External Fragments

300 K

260 K

660K

Compaction: re-locate memory contents to place all free memory
together in one large block.

37

Dr. Tarek Helmy@KFUPM-ICS
38

Paging to minimize Fragmentations

• Paging permits the logical address space of a process to be non-contiguous.

• Divide physical memory into blocks called frames.

– The size of the frame is a power of 2, between 2
9
=512 KB and 2

24
=16 MB

• Divide logical memory (process space) into blocks of same size called pages.

• The size of a page is typically a power of 2, from 512 KB to 16 MB. The page’s

size will be the same size as of the frame.

• OS has to keep track of all free frames,

• To run a process of size n pages, the OS needs to find n free frames and loads

the process’s n pages into n free frames. Otherwise partial loading will be done.

• The OS uses a page table to translate the logical address to physical address.

– Each process has a page table

• A pointer to the page table is stored with the other registers in PCB.

• CPU dispatcher loads the page table into the system-wide hardware

page table (like PC and registers) as part of the context switch.

• With paging, internal fragmentation may be there (a process may use some

bytes from the last page), while external fragmentation will not be there (any

free frame wherever it is can be allocated to a process).

• Page and frame sizes depends on the HW architecture of the processor.

developer
Highlight
is it only in the equal size partitioning?

Dr. Tarek Helmy@KFUPM-ICS
39

Paging Example

Frame no.Page no.

Dr. Tarek Helmy@KFUPM-ICS
40

Address Translation/Mapping Scheme

• Address generated by CPU (logical address) is divided into:

– Page number (p): Used as an index into a page table to identify the

frame number (base address) of each page in physical memory.

– Page offset (d): Combined with base address (frame number) to

define the physical memory address that is sent to the memory

address register.

• If the size of logical address space is 2m, and a page size is 2n.

• The page table will have (2m/2n) m-n entries.

• Where p is an index into the page table and d is the displacement within

the page.

• If the size of the physical memory is 2k

• The width (# of bits) of each page table entry= (2k/2n) k-n bits

Page number Page offset

p d

Logical Address

developer
Highlight
represent the size of subtracting the logical address space from the page size

((Just consider m-n to find number of entries))

Dr. Tarek Helmy@KFUPM-ICS
41

Paging Hardware: Address Translation

If the size of Logical address space is 2m bytes,

the size of the MM is 2k, page size is 2n then

entries of the PT are equal to the number of

pages (2m/2n) (m-n) and the width of each entry

equals k-n bits.

frame number frame offset

f (k-n) d (n)

Physical Address

Dr. Tarek Helmy@KFUPM-ICS
42

Paging Example

11 0113

2 * 4 + 1 = 9
Physical memory space = 25

Logical address space = 24

Page size = 22

PT Size = 24/22= 22

Each PT entry needs 5-2 bits

010 019

22

32 Bytes=25

5-2 2

Physical Address

Logical Address

Physical memory space =32 Bytes, (25)

Logical address space =16 Bytes (24)

If Page size is 4 Bytes (22)
Page Table entries= 24/22= (22)
Each PT entry has (5-2) bits

Dr. Tarek Helmy@KFUPM-ICS
43

Exercise

• Consider a logical address space of 128 pages of 2048 bytes each,

mapped onto a physical memory of 64 frames.

• How many bits are there in the logical address?

• How many bits are there in the physical address?

Dr. Tarek Helmy@KFUPM-ICS
44

OS has to keep a list of Free-Frames

Before allocation After allocation

1. At the time of executing a process, its size expresses in pages will be

determined. Each page will be mapped to one frame.

2. If the process requires urgently n pages, at least n frames must be available in

memory. Otherwise partial loading will be supported.

3. If n frames are available, they are allocated to this process. The first page of

the process is loaded into one of the allocated frames and the frame number

is put in the page table for this process and so on.

Page no.
Frame no.

Dr. Tarek Helmy@KFUPM-ICS
45

Page Table Size & Page Size

• With each process having its own page table, and with each page table

consuming considerable amount of memory.

• A lot of memory will be used to keep track of the main memory. i.e.

• Consider a process with 32-bit logical address space (4GB), if the page

size is 4 KB (212) then a page table may consists of up to 1 million

entries, 232/212=1MB. Assuming that each entry needs 4 bytes (to

represent the # of frames) then each process may need up to 4 MB of

the MM for its page table only.

• Smaller page size leads to more pages, and more pages lead to

larger page table’s size.

• Want to set page size to reduce internal fragmentation

Dr. Tarek Helmy@KFUPM-ICS
46

FYI: Optimal Page Size

• What is the optimal page size (p)?

– The OS researchers came out with an equation to determine the

optimal page size as following:

p = 2se

• s = average process size,

• e = size of each page table entry

– Overhead = (s/p)*e + p/2

• s/p = average number of pages per process

• (s/p)*e = space taken up by average process in page table.

• p/2 = average wasted memory in the last page of process

due to internal fragmentation.

developer
Highlight

Dr. Tarek Helmy@KFUPM-ICS
47

Implementation of Page Table

• Most OSs allocate a page table for each process.

• A pointer to the process’s page table is stored with other register values

in the PCB.

• When the dispatcher is asked to start a process, it reloads that pointer

and defines the correct page table value.

• Most OSs allow page table to be very large and so, page table is

kept in main memory (OS memory) and,

– Page-Table Base Register (PTBR) points to the page table.

– Changing the page table requires only to change PTBR.

The problem is:

• Every data/instruction access requires two memory accesses

– One for the address mapping and one for the data/instruction.

• The simplest way to implement the page table is to use fast dedicated

registers if the size of the page table is small.

Dr. Tarek Helmy@KFUPM-ICS
48

Associative Register (Hardware)

• Two access problem of the MM can be solved by using of a special fast-lookup

hardware cache called associative registers or Translation Look-aside Buffers

(TLBs).

• Each entry of the TLB consists of a key and a value

– The TLB contains only (the working set) a few of the page table entries.

– When the logical address is generated by the CPU, its page number is

presented to the TLB in parallel search scheme,

– If the page number is found, its frame number is used to access the MM.

– If the page number is not in the TLB, a memory reference to the page table

must be done.

– When the frame number is obtained, use it to access MM and add the page

and frame number to the TBL for the next reference.

• Every time a new page table is selected, the TLB entries must be erased

to ensure that the next executing process does not use the wrong

translation information.

• Some TLB stores Address-Space Identification (ASID) in each TLB,

• ASID uniquely identifies each process and is used for protection.

Dr. Tarek Helmy@KFUPM-ICS
49

Translation Look-aside Buffers (TLBs)

• Two accesses of the MM can be solved by the use of a special fast-lookup

hardware cache called associative or Translation Look-aside Buffers (TLBs).

• Each entry of the TLB consists of a key (page number) and a value (frame number)

• The TLB contains only a few of the page table’s entries (working set).

Parallel

Search

Dr. Tarek Helmy@KFUPM-ICS
50

Effective Access Time (EAT)

• Associative (TLB) Lookup time =  time units

• Assume memory access time is x time units

• Hit ratio (): Percentage that a page number is found in

the TLB.

• Hit ratio (): should be increased by increasing the

number of entries in the TLB, however it is costly as the

associative memory is too expensive.

• Effective memory-access time (EAT)

EAT = (x + )  + (2x + )(1 – )

Dr. Tarek Helmy@KFUPM-ICS
51

Effective Access Time (EAT)

• Example 1

– Associate lookup  = 20

– Memory access x = 100

– Hit ratio () = 0.8

– EAT = (100 + 20) * 0.8

+ (200 + 20) * 0.2

= 1.2 * 100 + 20 = 140

• Example 2

– Associate lookup  = 20

– Memory access x = 100

– Hit ratio ()= 0.98

– EAT = (100 + 20) * 0.98

+ (200 + 20) * 0.02

= 1.02 * 100 + 20 = 122

40% slow in memory access time 22% slow in memory access time

EAT = (x + )  + (2x + )(1 – )

Dr. Tarek Helmy@KFUPM-ICS
52

Validity of Pages and EAT

• Additional bits can be added to the page table to identify:

– Validity of pages, access type (read-only or read-write)

• Such kind of bits can enhance the protection and also minimize the EAT by

avoiding the second time access to memory if the page is not there in the MM.

• Valid-invalid bit attached to each entry in the page table:

– “Valid” indicates that the associated page is in MM.

– “Invalid” indicates that the page is not in MM and thus the second acess to

the MM should be avoided.

– The OS uses this bit to allow or disallow access to that page.

Dr. Tarek Helmy@KFUPM-ICS
53

Memory Protection with Valid-Invalid bit

1. Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally through page table.

2. Second access to generate an address for pages 6 or 7 should be avoided.

Dr. Tarek Helmy@KFUPM-ICS
54

Page Table Structure

• With each process having its own page table stored in memory and used to

map logical address into physical one.

• A huge a mount of memory will be used to map logical addresses into physical

addresses.

• It also needs more free and contiguous memory space to be stored in.

• How to solve this problem?

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

Dr. Tarek Helmy@KFUPM-ICS
55

Hierarchical Page Tables

• To resolve the large size page tables problem, we want to allocate the page

table into noncontiguous blocks.

• And this means, break up the page table address space into multiple page

tables.

• A simple technique is to use two-level paging algorithm, in which the page table

itself is also paged.

Two-Level Page-Table Scheme

Dr. Tarek Helmy@KFUPM-ICS
56

Multilevel Page Tables

• Since a page table will generally require several pages to be stored.

One solution is to organize page tables into a multilevel hierarchy.

– When 2 levels are used, the page number is split into two numbers

p1 and p2

– P1 indexes the outer paged table (directory) in main memory who’s

entries point to a page containing page table entries which is itself

indexed by P2.

– Page tables, other than the directory, are swapped in and out as

needed.

Frame #

Physical Address

(F# + D)

Dr. Tarek Helmy@KFUPM-ICS
57

Two-Level Paging Example

• A logical address (on 32-bit machine with 4K page size) is divided
into:

– A page number consisting of 20 bits (32 - 12 = 20)

• If each entry needs 4 bytes220 * 4 bytes = 4 MB

– A page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided into:

– A 10-bit page number.

– A 10-bit page offset.

• Thus, a logical address is as follows:

– P1 is an index into the outer page table, and P2 is the
displacement within the page of the outer page table.

– Because address translation works from the outer page table
inwards, it is also known as a forward-mapped page table and is
used in Pentium 2.

page number page offset

20 12

Page number Page offset

p1 p2 d

10 10 12

Dr. Tarek Helmy@KFUPM-ICS
58

Two-Level Page Tables

frame 0

frame 1

frame 2

page

frame Y

…

frame 3

Physical Memory

offset

physical address

page frame #

master

page table

secondary page#

virtual address

master page # offset

secondary

page table #secondary

page table # addr

page frame

number

12 bits

12 bits

8 bits

Dr. Tarek Helmy@KFUPM-ICS
59

Multilevel Paging and Performance

• Since each level is stored as a separate table in memory, converting a
logical address to a physical one may take many memory accesses.

• Even though time needed for one effective memory access is
increased, caching permits performance to remain reasonable.

• A 64-bit logical address space with 4K page size:

– # of PT entries = 252 (64 -12 = 52)
page number page offset

52 12

page number page offset

42 10 12

page number page offset

32 10 10 2

page number page offset

22 10 10 10 2

Dr. Tarek Helmy@KFUPM-ICS
60

Hashed Page Tables

• If we have a collection of n pages whose keys [base addresses] are unique integers then

we can store them in a hash table.

• Lookup time is minimized.

• Common in address spaces > 32 bits,

• The virtual page number is hashed into a page table that contains a chain of elements

hashing to the same location.

• Each element consists of three fields, virtual page number (Key), value of the mapped

page frame, a pointer to the next element in the list.

The algorithm works as follows:

• The page index [Key] is compared with the virtual page number in linked list for a match.

• If a match is found, the corresponding value of the mapped page’s frame is extracted to

form the desired physical address.

• If there is no match, subsequent entries in the list are searched for matching.

Dr. Tarek Helmy@KFUPM-ICS
61

Inverted Page Table

• Another solution to the problem of maintaining large page tables is to

use an Inverted Page Table (IPT).

• We generally have only one IPT for the whole system.

• There is only one entry per physical frame in the IPT (rather than one

per virtual page).

– This reduces a lot the amount of memory needed for page tables.

• The 1st entry of the IPT is for frame #1. The nth entry of the IPT is for

frame #n and each of these entries contains the virtual page number.

• The process ID with the virtual page number could be used to search

the IPT to obtain the frame #.

– Maintain inverted page table in associative memory hardware TLB

whose entries are searched in parallel.

– Use hash table to hash the virtual page address.

• A page fault occurs if no match is found.

Dr. Tarek Helmy@KFUPM-ICS
62

Inverted Page Table

The algorithm works as follows:

• Each inverted page table entry is a pair of <process-id, page-

number>

• When a memory reference occurs, the <process-id, page-

number> is compared with the contents of the inverted page

table.

• If a match is found, say at ith frame then the physical address <i,

offset> is generated.

• It decreases memory needed to store each page table, but

increases time needed to search the table when a page

reference occurs.

Dr. Tarek Helmy@KFUPM-ICS
63

Inverted Page Table Hardware

• Hash table with <pid, p> as hash key

i1 i2 i3

Hash Table

Inverted Page Table

Dr. Tarek Helmy@KFUPM-ICS
64

Inverted Page Table

• The IPT does not contains complete information about the logical

address space of a process and this information is necessary in case of

a page fault.

• For this information to be available an external page table (one per a

process) must be kept in memory.

• Referring to page tables may negate the benefit of the IPT. However,

– These referenced page tables will occur only when a page fault occurs.

– On demand paging, we need only the page table of the active process to be

kept in memory by swapping it in.

Inverted Page Table

Dr. Tarek Helmy@KFUPM-ICS
65

Sharing of Pages

• As we have seen, paging allows the process to be non-contagiously loaded

which reduces the fragmentations and improves the MM utilizations.

• One more advantage of paging is the possibility of sharing common pages, if

we have 40 processes share a text editor of 150 KB, we can share one copy of

the text editor rather than consuming 40*150 KB if we can not share it.

• Heavily used programs like Compilers, OSs, Editors, etc. can be shared.

• Shared Code

– One copy of read-only (reentrant code, non-self-modifying) code can be

shared among processes (i.e., text editors, compilers, OS).

– The shared pages should be protected by OS (page protection).

– Shared code must appear in the same location in the logical address space

of all processes.

– Inverted page tables have difficulties implementing shared pages. why?

• Private code and data

– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere in the

logical address space.

Dr. Tarek Helmy@KFUPM-ICS
66

Shared Pages Example

Dr. Tarek Helmy@KFUPM-ICS
67

Segmentation

• Split the Process address space into dynamic size segments.

• Each segment is an independent, and separately-addressable unit.

• Every segment is assigned (by software) a base address, which is the starting

address in the memory space.

• A program is a collection of segments. A segment is a logical unit with name

and a length such as:

– Main program (code section),

– Subroutines,

– Functions,

– Local variables,

– Global variables,

– Stack,

– Symbol table,

– Arrays

• The compiler automatically constructs segments reflecting the input program.

• Different compilers may create separate segments for global variables, stack,

code portion of functions, etc…

• Segments are numbered and referred by number.

Dr. Tarek Helmy@KFUPM-ICS
68

Memory Segmentation

P
h

y
si

ca
l

M
em

o
ry

Segment 1 Segment 2

Segment 3

Segment 4

L
o
g
ic

a
l
A

d
d

re
ss

 s
p

a
ce

Dr. Tarek Helmy@KFUPM-ICS
69

Segmentation

1. If the segment is in main memory, the entry

contains the starting address and the length

of that segment.

2. Logical to physical address translation is

similar to paging except that the offset is

added to the starting address (instead of

being concatenated).

3. Similarly to paging, each segment table entry

contains a present bit and a modified bit.

4. Other control bits may be present if

protection and sharing is managed at the

segment level.

Dr. Tarek Helmy@KFUPM-ICS
70

Segmentation Architecture

• Logical address consists of a two parts

– <segment-number, offset>

• Segment table has:

– Base: contains the starting physical address where the segment
resides in memory.

– Limit: specifies the length of the segment.

• Segment-table base register (STBR) points to the segment table’s
location in memory.

• Segment-table length register (STLR) indicates number of segments
used by a program.

• Logical address consists of S [seg. Number] and D [offset into seg.]

– Segment number S is legal if S < STLR

• S is used as an index into the segment table.

• D must be between 0 and the limit. If not, trap an error to the OS.

• If yes, it is added to the segment base to produce the physical
address.

Dr. Tarek Helmy@KFUPM-ICS
71

• The hardware must map a two dimensional (segment # and offset) into
one-dimensional address.

CPU

Physical

Memory

Limit Base

+<

No

Logical

Address Yes

Physical

Address

Segment Table

S D

Segmentation Hardware

Dr. Tarek Helmy@KFUPM-ICS
72

Address Translation in a Segmentation System

Dr. Tarek Helmy@KFUPM-ICS
73

Example of Segmentation

1. We have 5 segments numbered 0 to 4. They stored in the physical memory .

2. The segment table has a separate entry for each segment, the base address

and the limit.

3. Example, segment 2 is 400 bytes long and started at 4300.

4. A reference to byte 53 of segment 2 is mapped to location 4300 +53=4353.

Dr. Tarek Helmy@KFUPM-ICS
74

Protection and Sharing of Segments

 A particular advantage of segmentation is the association of protection

with the segments, because the segments represent a semantically

defined portion of the program, instructions, data.

 For example, the instruction segment can be defined as read only.

 Because the instructions are non-self modifying,

 Useful protection bits in segment table entry:

 Read-only/read-write bit

 Supervisor/User bit

 The memory mapping HW will check the protection bits associated

with each segment table entry to prevent illegal memory access.

 Another advantages of segmentation involves the sharing of code or

data. Each process has a segment table associated with it.

 Note, local data segments can not be shared.

Dr. Tarek Helmy@KFUPM-ICS
75

Sharing in Segmentation Systems

 Segments are shared when entries in the segment tables of 2 different

processes point to the same physical locations.

 Ex: the same code of a text editor can be shared by many users

 Only one copy is kept in main memory

 Shared segments should not be modified

 So that several processes can share them

 So each user would still need to have its own private data segment

 More logical than sharing pages

Dr. Tarek Helmy@KFUPM-ICS
76

Sharing of Segments: Text Editor Example

Dr. Tarek Helmy@KFUPM-ICS
77

Combined Segmentation and Paging

• To combine their advantages, some OSs page the segments into pages

and use a page table per each segment. Why?

• Each process has:

– One segment table

– One page table per segment

• The virtual address consist of:

– A segment number: used to index the segment table whose entry

gives the starting address of the page table for that segment.

– A page number: used to index that page table to obtain the

corresponding frame number.

– An offset: used to locate the word within the frame

• Segment and page tables can themselves be paged!

Dr. Tarek Helmy@KFUPM-ICS
78

Segmentation & Pagination

P
h

y
si

ca
l

M
em

o
ry

Offset

Logical Address

Segment Table

Page Nbr.Segment Nbr.

Page Tables

Dr. Tarek Helmy@KFUPM-ICS
79

Simple Combined Segmentation and Paging

• The Segment Base is the physical starting address of that segment

• If the page and segment tables are paged, in the virtual address, the

segment and page numbers are divided into two parts.

• Present and modified bits are present only in page table entry

• Protection and sharing info most naturally resides in segment table entry

– Ex: a read-only/read-write bit, a kernel/user bit...

Dr. Tarek Helmy@KFUPM-ICS
80

Address Translation in combined

Segmentation/Paging System

Dr. Tarek Helmy@KFUPM-ICS
81

Advantages of Segmentation + Paging

• Supports both dynamic loading and linking:

– Linking a new segments needs to add a new entry to a segment

table.

• Segments can grow without having to be moved in physical memory.

– They just need more pages in physical memory.

• Protection and sharing can be done at the ‘logical’ segment level.

– Pages inherit protection and sharing attributes of the segments to

which they belong.

Dr. Tarek Helmy@KFUPM-ICS
82

• Problem: to run large processes (larger than the available physical memory) and

to increase the number of processes simultaneously loaded into the memory.

• Solution: Support non-contiguous allocation with partial loading, Swapping out

non needed processes

– Swapping problem:

• Swapping time and quantum time

• Problem: The internal and external fragmentation.

– Solution: Compaction or dividing the process memory space into smaller

pieces (Paging, Segmentation or Paging of Segments).

• Problem: Managing the allocation and accessing of page or segment tables

– Solutions: Using, caching, hierarchical page tables, hash tables, IPT.

• We should think of a way to extend the MM by using a part of the auxiliary

memory which will be called Virtual Memory.

Memory Management Review

Dr. Tarek Helmy@KFUPM-ICS
83

The End!!

Thank you

Any Questions?

