
Dr. Tarek Helmy, ICS-KFUPM

Welcome to the ICS 431 sessions and let us

collaborate to understand and to be knowledgeable in the

“Operating Systems”

Dr. Tarek Helmy, ICS-KFUPM 2

Ch. 4: Multi-Threading Programming

Dr. Tarek Helmy El-Basuny

Weeks 5-6

Operating Systems ICS 431

Dr. Tarek Helmy, ICS-KFUPM 3

• Processing Modes in the OSs.

• Threads Definition

• Thread’s Control Block

• What does a thread share with the parent process?

• Benefits of Threads vs. Processes

• Examples of Multithreaded Processes

• Thread’s Life Cycle

• User’s and Kernel’s Level Threads

• Combining ULT and KLT Models

– Many-to-One

– One-to-One

– Many-to-Many

• Threading Issues

– Thread Cancellation, Threads Pool, Signal Handling

• Threads Scheduling

– Priority Scheduling, and Priority Inversion/Inheritance Mechanisms

• Threading in Different Platforms:

– Windows, Solaris, Linux, Mac OS, etc.

Ch 4: Multi-Threading Programming

Dr. Tarek Helmy, ICS-KFUPM 4

A Process Concept

• A process is a key OS abstraction that users see.

• The environment you interact with when you use your computer is

built up out of processes.

– The power point we use is a process.

– The browser you use is a process.

– The shell you type commands into is a process.

– When you execute a program you have just compiled, the OS

generates a process to run that program.

• Let us think of the browser as a process.

• Does it support concurrency (i.e. browsing a page, down-loading,

playing a video, ...)?

• Is it a responsive process?

• If yes, why?

– Because it is a muli-threaded process.

Dr. Tarek Helmy, ICS-KFUPM 5

Processing Modes

• In uni-processing mode: the Os supports a single process to run.

• In concurrent processing mode: the OS is sharing a single processor among

several processes through interleaving I/O pound with CPU pound processes.

• In Multiprocessing/Multitasking mode: the OS is sharing multiple processors

among several processes (the # of processor is less than the # of processes).

• In parallel processing mode: The Os uses more than one processor to

simultaneously run multiple processes in parallel (the # of processor is more than

or equal to the # of processes).

 Multithreading is a kind of multitasking/multiprocessing with low overheads and no

protection of tasks from each other, all threads share the same address space

(of the parent process) in memory.

 Processes can do several things concurrently by running more than one thread.

 A process (Web Browser) may consist of the following threads:

 GUI thread, I/O thread, Computation thread, etc.

 A word processing consists of multiple threads, i.e. spell checker, auto save, ..

Dr. Tarek Helmy, ICS-KFUPM

Sequential vs. Parallel Processing Modes

6

Sequential Processing

Parallel Processing

• Processes running on multiple-processors may be Independent or

Dependent.

• No synchronization is required for independent processes but it is needed for

dependent processes.

• We are going to study latter different synchronization methods.

Dr. Tarek Helmy, ICS-KFUPM

Multi-Processing with Single Processor Mode

7

• Refer to, single-processing, concurrent-processing, multi-processing, single-

processing with multithreading, multi-processing with multithreading modes

we discussed earlier in the course?

• Processor time will be shred among concurrently running processes.

Process A

Processor

Process B Process C

The Operating System

assigns processor’s time

to each Process based

on a certain policy.

/ XX

X X/

X X/

X /X

X /X

/

Dr. Tarek Helmy, ICS-KFUPM

The Multi-Threading Mode

Process A

Processor

A Threading

library creates

threads and

assigns

processor time

to each thread

T0
T1

T2

8

• Processor time assigned to Process A will be concurrently shred among its threads

(T0, T1, T2) such that only one thread at a time will be executed.

Dr. Tarek Helmy, ICS-KFUPM

Multi-Threading in Multi-Processors Mode

Process A

Processor 1
T0

T1
T2

Processor 2

Processor 3

Processor 4

9

• Processors time assigned to Process A will be shred among its threads. Parallel or

concurrent execution will be supported based on the # of threads and the # of

processors.

Dr. Tarek Helmy, ICS-KFUPM 10

What is a Thread?

• A thread is a code section in a process that can execute concurrently with

other sections in the parent process (multithreading).

• Thread/Lightweight Process/Execution Context is a single sequential flow

of control within a process.

• A thread likes a sequential program, it has:

• A beginning, a sequence of execution, and an end.

• Has a single point of execution, at any given time.

• A thread cannot live on its own, it must live within a process.

• Each process has its own memory space, but threads share memory

space of the parent process.

• Therefore processes are “heavyweight” while threads are “lightweight”.

• A Browser is a multi-threaded program. The Browser can perform multiple

simultaneous tasks:

• Fetch the source code of the main page,

• Download and play a media file,

• Activate separate threads for other parts of the page,

• Each thread sets up a separate connection with the server:

• Uses blocking calls

• Each part (an image) fetched separately and in parallel.

Dr. Tarek Helmy, ICS-KFUPM 11

Thread’s Control Block

• Thread Control Block (TCB) is a data structure contains thread’s information:

• Thread’s State (ready, or running, or blocked),

• Starting Address (Program Counter),

• Registers, Execution Stack.

• Parent’s process control block contains everything else (e.g. process id,

open files, code segment, global data, etc.)

• TCB is a subset of the parent’s process control block (PCB).

• The parent’s (PCB) is the union of all TCBs of its children threads.

• When a child thread alters non-private-data/public-data, all other

threads of the process can see this.

• Threads communicate via shared variables.

• A file opened by one thread is available to other threads of the parent

process.

msaad
Highlight
Search about it

Dr. Tarek Helmy, ICS-KFUPM 12

What does a Thread share with the Parent Process?

• Multiple threads within a single process share:

– Process ID (PID)

– Address space

• Code section

• Global data section

– Open file descriptors

– Signals and signal handlers

– Current working directory

– User and group ID

• Each thread has its own

– Thread ID (TID)

– Set of registers, including Program Counter and Stack Pointer

– Stack for local variables and return addresses

– Signal mask

msaad
Highlight

msaad
Highlight

Dr. Tarek Helmy, ICS-KFUPM 13

Single Threaded & Multithreaded Process Models

• Thread Control Block contains a register image, thread priority and thread

state information.

Dr. Tarek Helmy, ICS-KFUPM 14

Processes vs. Threads

Which of the following belongs to the process and which to the thread?

Program code:

Local or temporary data:

Global data:

Allocated resources:

Execution stack:

Memory management info:

Program counter:

Parent identification:

Thread state:

Registers:

Process

Thread

Process

Process

Thread

Process

Thread

Process

Thread

Thread

Dr. Tarek Helmy, ICS-KFUPM 15

Threads vs. Processes

• If two processes want to access shared data structures, the OS must be

involved.

– OS involvement requires system calls, mode switches, extra execution

time.

• Creating new processes, switching between processes, etc. is slower than

performing same operations on threads.

• Two threads of the same process can share global data automatically

without the OS involvement (same as two functions in a single process).

• Compared to using several processes, threads are more economical way

to manage an application with parallel activities.

msaad
Highlight

msaad
Highlight

Dr. Tarek Helmy, ICS-KFUPM

Benefits of Threads

Takes less time
to create a new
thread than to
create a new

process

Less time to
terminate a thread
than to terminate a

process
Switching between
two threads takes

less time than
switching between

two processes

Threads enhance
efficiency in

communication
between processes

Dr. Tarek Helmy, ICS-KFUPM 17

Benefits of Multi-Threaded Processes

• Responsiveness: Multithreading allow the process to continue running even

if part of it (a thread) is blocked or is performing a lengthy operation. To

enable cancellation of separable tasks.

• Speed up the Execution: On a multiprocessor machine, multiple kernel

level threads from the same process can execute simultaneously.

• Resource sharing: Threads share the resources and memory of the process

to which they belong. This allows an application to have several threads

within the same address space.

• Economy: Allocating memory and resources for each process is costly,

while threads within the same process share memory and files.

• Supports of asynchronous processing: Independent parts of an

application that do not need to run in sequence can be threaded,

– i.e. auto-saving of RAM into disk. A thread schedules itself to come-alive

every 1 minute to do this saving concurrently with main processing.

Dr. Tarek Helmy, ICS-KFUPM 18

Benefits of Multithreading

• Multithreaded programs appear to do more than one thing at a time (same

ideas as multiprocessing, but within a single program).

– While you are browsing a web page,

– Download several files in the background,

– Play a music file.

• Multithreading is essential for some applications (i.e. games, graphics, …)

– One thread does the animation,

– Second thread responds to user inputs,

– Third thread is downloading an image.

• From the management point of view:

– Takes less time to create a new thread than a process

– Less time to terminate a thread than a process

– Less time to switch between two threads within the same process

– Since threads within the same process share memory and files, they can

communicate with each other without invoking the kernel.

Dr. Tarek Helmy, ICS-KFUPM 19

Example: Multi-Threaded Process

• Word Processor with 3 Threads

– Thread 1: Interacts with user, and gets the pressed characters.

– Thread 2: Reformats the text (in background).

– Thread 3: Periodically backups the file into the HDD.

Dr. Tarek Helmy, ICS-KFUPM 20

Example: Single Threaded Web Server

Disk

requests Web pages

CGI Web server

• If we have a single threaded server like this:

• How long does the client request wait?

• Is it going to support the responsiveness goal of the OS?

• Is it going to be productive and maximize the throughput?

Dr. Tarek Helmy, ICS-KFUPM 21

Example: Multi Threaded Web Server

Disk

Dispatcher

Many workers

• Multi-threaded Web server:

• Is capable of processing multiple simultaneous service requests
in parallel which increases the throughput.

• Gets requests, sends web pages back quickly, be responsive.

• Keep popular pages in cache memory, i.e. some pages much
more popular than others.

Dr. Tarek Helmy, ICS-KFUPM 22

Other Examples of Multithreaded Programs

• Modern OS kernels

– Deal with concurrent requests by mapping each user’s request to

a corresponding thread.

– But no protection needed within kernel.

• Database Servers

– Responsive access to shared data by many concurrent users.

• Network Servers

– Responsive support to concurrent requests from network.

– Multiple concurrent operations; File server, Web server, and

airline reservation systems.

• Parallel Processing (More than one physical CPU)

– Split program into multiple threads for parallelism.

• Embedded systems

– Single Program that supports concurrent operations through

multithreading.

Dr. Tarek Helmy, ICS-KFUPM 23

Programming Assignment

Dispatcher

While (1) {

get_request(&req);

start_new_worker(req);

}

Worker

Worker_thread(req) {

fetch_webpage(req,&page);

return_page(req, page);

}

• In the lab, you need to code a Multi-Threaded program that will be able to

process multiple simultaneous service requests in parallel.

• We want to compare Multi-Threaded process with single threaded

process performance.

• See the effect of the number of threads on the response time.

New Requests dispatcher

workers

Dr. Tarek Helmy, ICS-KFUPM 24

Summary: Threads vs. Processes

• A thread has no data or code
segments.

• A thread cannot live on its own,
it must live within a process.

• There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack.

• Inexpensive creation

• Inexpensive context switching.

• If a thread dies, its stack is
reclaimed.

• While one thread is blocked and
waiting, a second thread in the
same task can run.

• Multiple threaded processes
use fewer resources.

• A process has code/data/heap

& other segments.

• There must be at least one

thread in a process.

• Threads within a process share

code/data/heap, share I/O, but

each has its own stack &

registers.

• Expensive creation

• Expensive context switching.

• If a process dies, its resources

are reclaimed & all threads die.

• If one process is blocked, then

no other process can execute

until the first process is

unblocked.

Dr. Tarek Helmy, ICS-KFUPM 25

OSs Support for Threads and Processes

• MS-DOS supports a single user process and a single thread process.

• UNIX/ Linux supports multiple users and processes but with only one thread

per process.

• A Java runtime environment supports one process with multiple threads.

• Solaris, Windows family, OS/2 support multiple processes with multiple threads.

MS-DOS

UNIX/ Linux WINDOWS

JAVA RUNTIME

Dr. Tarek Helmy, ICS-KFUPM 26

Threads Life Cycle

• Thread’s States:

– New: a thread is created by a process/thread using a command often called

spawn/fork/start.

– Running: doing the assigned job.

– Blocked: when a thread needs to wait for an I/O event or asked to sleep for

some time.

– Dead: when a thread completes its job.

 Termination of a process, terminates all threads within the process in windows.

 There is no suspend state because all threads within the same process share the

same address space.

 Indeed: suspending a single thread involves suspending all threads of the same

process if they are of type user level threads.

Dr. Tarek Helmy, ICS-KFUPM

I/O operation completes

start()

Currently executed
thread

Ready queue

• Waiting for I/O operation to complete
• Waiting to be notified
• Sleeping
• Waiting to enter a synchronized section

Newly created
threads

Threads States

Terminated

Running

Waiting

Ready
Stop

sleeping

Dr. Tarek Helmy, ICS-KFUPM 28

Java’s Thread Life Cycle

• Newly Created State

– Thread myThread = new MyThreadClass();

• Runnable State

– After calling start() in which run() is executed myThread.start();

– Logically it is running, but physically it can be in one of the two states

• Running State (Physically running on CPU)

• Ready State (Waiting for its turn in the ready queue)

• Blocked State

– Enters to Blocked State if the thread …

• Calls an objects wait() method

• Calls sleep() method

• Waits for I/O

– Exits from Blocked State if the thread …

• Is waiting for an object, and on that object notify() or notifyAll() is
called.

• Is sleeping and the sleeping time elapsed.

• Is waiting for I/O, and I/O is completed.

• Dead State

– When finishes the run() process

– myThread.stop();

public void run() { int i = 0;

while (i < 100) { i++;

System.out.println ("i = " + i); }

}

Dr. Tarek Helmy, ICS-KFUPM 29

Alive

Thread State Diagram from the Parent Process point of view

New Thread Dead Thread

Running

Runnable

new CounterThread1(max);

run() method
returns

while (…) { … }

Blocked

Object.wait()
Thread.sleep()
blocking IO call
waiting on a monitor

cntThread.start();

Dr. Tarek Helmy, ICS-KFUPM 30

User-Level Threads (ULT)

• User-level thread management done by threads library in

the user space. The library provides support for thread

creation, scheduling. There is no support from the OS

kernel.

• Threads scheduling is application specific. The OS kernel

is not aware of the existence of user’s level threads.

• User’s level Thread switching does not require kernel

mode privileges (no mode switch).

• Blocking of any user’s level thread blocks the entire

process if the kernel is single threaded.

• When a user-level thread makes a system call (e.g.,

reading a file from disk), the OS moves the process to

the waiting state and will not schedule it until the I/O has

completed. Thus, even if there are other user-level threads

within that process, they have to wait, too.

• User level threads are fast to create and manage.

• Examples user thread libraries:

– Solaris 2 UI-threads, Mach C-Threads, pthreads, etc…

Processor

msaad
Highlight

msaad
Highlight
What does single threaded mean?

Dr. Tarek Helmy, ICS-KFUPM 31

User’s Level Threads Library

• The threads-support library in the user’s space contains code

for:

– Creating and destroying threads.

– Passing messages and data between threads.

– Scheduling threads for execution.

– Saving and restoring thread contexts.

Dr. Tarek Helmy, ICS-KFUPM 32

Kernel Activity for ULTs

• The kernel is not aware of user’s level thread activity but it is still

managing the parent process activity.

• When a user’s level thread makes a system call, the whole

process will be blocked.

• But for the thread library, that thread is still in the running state.

• So thread states are independent of process states.

developer
Highlight
How the thread is running after making system call? should it be blocked?

Dr. Tarek Helmy, ICS-KFUPM 33

Advantages and Disadvantages of ULT

• Advantages

– Thread switching does

not involve the OS kernel:

no mode switching

– Scheduling can be

application specific:

choose the best

algorithm.

– ULTs can run on any OS.

Only needs a thread

library to be installed

(more Portable)

• Disadvantages

– If one ULT makes a

system call, the OS

kernel blocks the process.

So all threads within the

process will be blocked.

– The kernel can only

assign processes to

processors. Two threads

within the same process

cannot run

simultaneously on two

processors. (less

concurrency and

parallelization)

Dr. Tarek Helmy, ICS-KFUPM 34

Kernel-Level Threads (KLT)

• Supported and managed by the OS

Kernel (slower to create).

• No thread library but an API (I.e. system

calls) to the OS kernel thread facility.

• OS Kernel maintains the the process and

the threads.

• Switching between threads requires the OS

kernel involvement.

• Scheduling on a thread basis (another

thread can be scheduled in case of a

system call by others).

• Examples OS support KLT:

- Windows …

- Solaris

- Tru64 UNIX

- Linux

Processor

Dr. Tarek Helmy, ICS-KFUPM 35

Advantages and Disadvantages of KLT

• Advantages

– The kernel can

simultaneously schedule

many threads of the same

process on many processors

(good for multiprocessor

environment)

– Blocking is done on a thread

level not on the process

level.

– Kernel routines can be

multithreaded.

• Disadvantages

– Thread switching within the

same process involves the

OS kernel.

– There are 2 mode switches

per thread switch:

• User to kernel

• Kernel to user.

– This results in a significant

slow down the performance.

Dr. Tarek Helmy, ICS-KFUPM 36

Combined ULT/KLT Approaches

• To get the advantages of ULTs and KLTs, modern OSs support the existence

of both levels to be managed.

• Special type of processes called Lightweight processes (LWP) will be created

to support the mapping of ULTs into KLTs.

• We will discuss next three ways of the mapping process.

Dr. Tarek Helmy, ICS-KFUPM 37

Multithreading Models

• How do user’s and kernel’s threads map into each other?

• Many-to-One

• One-to-One

• Many-to-Many

Dr. Tarek Helmy, ICS-KFUPM 38

Many-to-One Model

k

Kernel thread

User thread• Used on OSs that do not support multiple

kernel’s level threads.

• Many user’s level threads mapped to a single

kernel’s level thread.

• Many-to-One allows a developer to create as

many threads as s/he likes, but only one kernel

thread can be scheduled at a time.

Advantages:

• Thread management is done in user space, so it

is easy.

Disadvantages

• The entire process will block if one thread

makes a blocking system call.

• Because only one thread can access the kernel

at a time, multiple threads are unable to run in

parallel on multiprocessors.

• Example: Solaris Green Threads work this way.

Dr. Tarek Helmy, ICS-KFUPM 39

One-to-One Model

k

User threads

k k

Kernel threads

k

• Used on OSs that support multiple

kernel’s level threads.

• Each user’s level thread maps to a

kernel’s level thread.

• Examples: Windows Family

Advantages:

• Provides more concurrency than many-

to-one model by allowing another

thread to run when one thread makes a

blocking system call.

• It allows multiple threads to run in

parallel on multiprocessors.

Disadvantage:

• Creating a user’s level thread requires

creating a corresponding kernel’s level

thread which can affect the

performance of the system.

Dr. Tarek Helmy, ICS-KFUPM 40

Many-to-Many Model

k

kernel threads

User threads

kk

• Allows many user’s level threads to be

mapped to many kernel’s level threads.

• The number of threads may be specific to

either a particular application or a particular

machine e.g. an application may be allocated

more kernel threads on a multiprocessor

machine than on a single processor machine.

• Allows the OS to create sufficient number of

kernel threads.

• Many kernel’s level threads can run in parallel,

• When a user level thread makes a system

call, the kernel can schedule another thread

for execution.

• Examples: Solaris 2, Windows Family, IRIX,

HP-UX and Tru64.

Dr. Tarek Helmy, ICS-KFUPM 41

Threads Issues

• Threads Scheduling: Which scheduling policy is used to schedule the

kernel threads?

– Scheduling means selecting a thread for running next.

• Thread cancellation/terminating: When one thread returns a result,

the others should be cancelled or not?

• Threads pool: How many Kernel Threads does the OS create?

– Is it beneficial to create threads in advance and pool them for further assignment?

• Signal handling: How does a parent process notify its threads that an

event has occurred and which thread is going to respond?

Dr. Tarek Helmy, ICS-KFUPM 42

Kernel Threads Scheduling

• Preemptive priority scheduling policy is used to schedule the kernel threads:

– Each thread is given a global priority number.

– Highest priority thread gets the CPU (preemption may occur, it means the

CPU can be taken away from the thread if more higher priority thread is ready

for running).

– Round-robin based on the priority.

• Preemption is essential in OS to be responsive with real-time threads.

• Example 1: Single Processor (Two Threads)

– Thread A (high priority), B (low priority), but A is waiting for a resource held

by B.

– When B releases the resource that thread A is waiting (sleeping) for.

– Thread B gives/preempts up CPU to allow thread A to run.

• Example 2: 2 Processors (Three Threads)

– Thread A (high priority), B (medium priority), C (low priority), but B is

waiting for a resource held by A.

– Threads A and C are running on CPUs, thread B waiting on resource owned

by thread A.

– Thread A releases the resource .

– Signal thread C to give up the CPU so thread B can run.

Dr. Tarek Helmy, ICS-KFUPM 43

Priority Inheritance/Inversion

• Priority scheduling problem: a high priority thread is blocked for a resource

held by a low priority thread, which means it cannot get the CPU cycles to

run while a medium priority thread is running!!!

• Example:

– Thread C (low priority) holds resource M.

– Thread B (medium priority) takes CPU.

– Thread A (high priority) blocks on M (held by C).

– So the execution returns to B; that means B runs for a long time!

– A is locked out of CPU for a long time, even though it is the highest

priority thread!

• Solution: Priority inheritance/Inversion

– Since A blocks on M (waiting for C), C gets (inherits) A’s priority.

– C will do its job and releases M then A gets its highest priority back

– A can run now.

Dr. Tarek Helmy, ICS-KFUPM 44

Threads Cancellation

• Cancellation: means terminating a target thread before finishing its job.

• Cancellation of a target thread may occur in 2 different scenarios:

– Asynchronous/Unsafe cancellation: terminates the target thread

immediately. (windows platform supports safe and unsafe cancelation)

– Safe cancellation: allows the target thread periodically to check if it should

be cancelled or not, If yes, terminate itself normally.

• In some OSs, termination of a process terminates all threads within the

process. (Unix/Linux platform supports safe cancelation)

• Think about the following scenarios:

1. Two threads searching a DB and one thread returns the result, the remaining

threads might be canceled without causing any troubles (safe cancelation).

2. When a user presses the stop bottom in the browser process then the thread

loading the page is canceled (causes a problem (unsafe cancelation).

developer
Highlight

developer
Highlight

Dr. Tarek Helmy, ICS-KFUPM 45

Difficulties with Asynchronous/Unsafe Cancellation

• Difficulty with asynchronous/unsafe cancellation:

– Canceling the thread while it is in the middle of updating data shared with

other threads.

• Canceling a thread asynchronously

– May cause inconsistency of the global variable’s values.

– May not free a necessary system-wide resources.

• Global variable, i.e. if counter = 0 is a shared global variable.

• Thread 1 does increment counter++ without updating the global value.

• Thread 2 does decrement it counter-- // “at the same time”

• What is the order of counter’s values ?

– 0 : 1 : 0?

– 0 : -1 : 0?

• Shared resources, i.e. a file is shared between two threads

– One thread closed the file while the other one is reading from it.

Dr. Tarek Helmy, ICS-KFUPM 46

Threads Pool

• The server process creates a number of threads at the process start up and

places them in a pool where they wait for work or can be used in the many to

many mapping mode.

– When a server receives a request, assigns it to a thread from the pool.

– Once a thread finishes its service, it returns to the pool and waits for a

work again.

– That means, no need to create a new thread for every client request, it

can be taken from the pool quickly.

Server Process

thread thread thread

Dr. Tarek Helmy, ICS-KFUPM 47

Threads Pool

• If the pool is empty, the up coming request waits until one becomes free.

• The server process dynamically adjusts the number of threads in the pool

[optimize memory use] based on some factors such as:

– The number of CPUs in the system,

– The amount of physical memory,

– Expected number of client requests.

• Advantages:

– Slightly faster to serve a request with an existing thread than creating a

new thread. Avoiding the overhead of creating a new thread.

– Thread pools improve resource utilization through concurrent execution.

– Allows the number of threads in the pool to be dynamic.

• Disadvantages:

– Creating too many threads randomly in one machine can cause the

system to run out of memory and even crash.

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

wait()

If Q is Empty

All the worker threads wait for tasks

Every thread looks
for tasks in the

queue

48

Threads Pool Implementation

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

Task

The number of worker threads

is fixed. When a task is inserted

to the queue, notify is called

“A-synchronized” model:

“Launch and forget”

Threads Pool Implementation

49

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

Task

The number of worker threads

is fixed. When a task is inserted

to the queue, notify is called

notify()

Threads Pool Implementation

50

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

The task will be assigned to a thread in the pool

Threads Pool Implementation

51

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

The task is executed by the thread

The remaining tasks are executed by the other threads

Threads Pool Implementation

52

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

When a task ends, the thread is released

While the Q is not empty, take the task from

the Q and run it (if the Q was empty, wait()

would have been called)

Threads Pool Implementation

53

Dr. Tarek Helmy, ICS-KFUPM

Task Queue

Worker Threads

A new task is executed by the released thread

Threads Pool Implementation

54

Dr. Tarek Helmy, ICS-KFUPM 55

• Processing Modes in the OSs. (i.e. Uni-, concurrent-, multi-, parallel-processing,

multithreading, multiprocessing with multithreading, etc..)

• Threads Definition

• Thread’s Control Block

• What does a thread share with the parent process?

• Benefits of Threads vs. Processes

• Examples of Multithreaded Processes (i.e. Modern OS kernels, Web servers, word

processor, browsers, DB servers, ..etc.)

• Single-Threaded virus Multi-threaded Programming Assignment

• Summary of Threads vs. Processes

• OSs Support for Threads and Processes

• Thread’s Life Cycle

• User’s and Kernel’s Level Threads (advantages and disadvantages)

• Combining ULT and KLT Models

– Many-to-One, One-to-One, Many-to-Many

• Threading Issues: Threads Scheduling, Thread Cancellation, Threads Pool,

– Priority Scheduling, and Priority Inversion/Inheritance Mechanisms

– Threads Signaling

• Threading in Different Platforms:

– Java-Threads, Linux-Threads, Windows-Threads, Solaris-Threads, P-Threads, etc.

Ch 4: Multi-Threading Programming

Dr. Tarek Helmy, ICS-KFUPM 56

Signal Handling

• Signals are used in OS to notify a process/thread that a particular event has

occurred.

• All signals follow the same pattern:

– The signal is generated due to the occurrence of a particular event.

– The generated signal is delivered to a thread or a process.

– Once delivered, the signal must be handled.

• A signal may be received either synchronously or asynchronously:

– Depending upon the source and the reason for the event being

signaled.

• Asynchronous signal: The process/thread does not know ahead of time

exactly when a signal will occur. i.e. a running program performs illegal

memory access or division by zero.

• Synchronous signal: The process/thread knows ahead of time exactly

when a signal will occur, i.e. expiration of assigned CPU time.

Dr. Tarek Helmy, ICS-KFUPM 57

Signal Handling

• Signals can be sent by:

– The OS kernel to a process/thread.

– One process to another process.

– A process to its threads.

• Signals may be handled by one of two possible handlers:

– A default signal handler.

– A user-defined signal handler [overriding the default one]

• When a process/thread receives a signal, it may perform one of the

following:

– Ignores the signal.

– Performs the default operation.

– Catches the signal (perform the user defined operation).

Dr. Tarek Helmy, ICS-KFUPM 58

Signal Delivering

• In single-threaded programs

– Straightforward: deliver the signal to the thread.

• In multiple-threaded programs

– Deliver the signal to every thread in the process. or

– Deliver the signal to certain threads in the process. or

– Assign a specific thread to receive all signals for the process.

• In Windows Os for example:

– Windows OS does not explicitly provide support for signals, but it

emulates the signals using Asynchronous Procedure Calls (APCs).

– APC is straightforward and is delivered to a particular thread in that

process.

– The APC facility allows a user thread to specify the thread that is to be

called when the user thread receives notification for a particular event.

Dr. Tarek Helmy, ICS-KFUPM 59

Java-Threads

• Java threads are implemented by the JVM but their behavior is heavily
influenced by the underlying OS and its characteristics.

• They do not fall under the category of either ULT or KLTs.

• The actual scheduling policy is OS-dependent, and determined together by
the host OS and the JVM implementation.

• Java offers concurrency mechanisms as a built-in part of the language:

– Built-in class Thread, with the run method as its "main"

– Synchronized methods, and synchronized code blocks

– Monitor locks and condition (wait) queues

– Thread priorities

• Green threads exist only at the user-level and are not mapped to multiple
kernel threads by the operating system.

• “Native/kernel threads" are the threads that are provided by the native OS.

• Native threads can realize the performance enhancement from parallelism
(multiple CPUs).

• Java is naturally multi-threaded and because of this the underlying OS
implementation can make a substantial difference in the performance of your
application.

developer
Highlight

developer
Highlight

Dr. Tarek Helmy, ICS-KFUPM 60

Linux-Threads

• From the Linux OS point of view, there is no concept of a thread.

• Linux implements all threads as standard processes.

– Linux does not distinguish between processes and threads

• The Linux kernel does not provide any special scheduling semantics or data

structures to represent threads.

• Instead, a thread is merely a process that shares certain resources with

other processes.

• Linux uses the concept of task rather than threads and processes.

• Each thread has a unique task_struct and appears to the kernel as a normal

process.

• Linux provides kernel-level tasks:

– Tasks are created with the clone() system call and all scheduling is done

in the kernel.

• Clone() allows a child task to share the address space of the parent task.

– The flags provided to clone() command help specify the behavior of the

new process and detail what resources the parent and child will share.

– i.e. clone_files, clone_newns (share files, or name space)

developer
Highlight

Dr. Tarek Helmy, ICS-KFUPM 61

Solaris2-Threads

• Solaris 2 is a version of UNIX with support for threads at the kernel
and user levels and real-time scheduling.

• It implements the Pthread API in addition to supporting user-level
threads with library of API for creation and management.

• Process includes the user’s address space, stack, and process
control block

• User-level threads (threads library)

– Invisible to the OS

– Are the interface for application parallelism

• Kernel threads

– The unit that can be dispatched on a processor and it’s
structures are maintain by the kernel

• Lightweight processes (LWP)

– Each LWP supports one or more ULTs and maps to exactly one
KLT

– Each LWP is visible to the application

Dr. Tarek Helmy, ICS-KFUPM 62

Solaris2-Threads

1. It defines an intermediate level of threads between kernel and user levels

called Light Weight Processes [LWP].

2. Each process contains at least on LWP

3. The thread library multiplexes user level threads on the pool of LWPs

Task 2 is equivalent to a pure KLT approach

We can specify a different degree of parallelism (Task 1 and 3)

Dr. Tarek Helmy, ICS-KFUPM 63

Decomposition of ULT Active State

• When a ULT is active, it is associated to a LWP and thus to a KLT.

• Transitions among the LWP states is under the exclusive control of

the OS kernel.

• A LWP can be in the following states:

– Running: assigned to CPU = executing

– Blocked because the KLT issued a blocking system call (but the

ULT remains bound to that LWP and remains active)

– Runnable: waiting to be dispatched to CPU

– Stopped: e.g. waiting for synchronization event

Dr. Tarek Helmy, ICS-KFUPM 64

Windows-Family-Threads

• Implements the Win32 API, it is the primary API for MS OS family, it uses the

one-to-one mapping.

• Each thread contains

- Thread id

- Register set

- Separate user and kernel stacks

- Private data storage area used by dynamic Link Libraries (DLL).

The primary data structure of Windows thread includes:

• TEB [thread environment block], contains thread identifier, user stack and

thread local storage.

• ETHREAD [executive thread block], contains thread start address and pointer

to the corresponding KTHREAD.

• KTHREAD [kernel thread block], contains scheduling and synchronization

information and the kernel stack.

Dr. Tarek Helmy, ICS-KFUPM 65

• Threads are scheduling using a priority-based preemptive scheduling

using a dispatcher

• 32 priority levels

– 1-15: Variable class

– 16-31: Real time

– 32: Dispatcher

– Idle thread is executed if no other thread is ready

– Interactive tasks can get up to 3 scheduling quantum over time

sharing applications.

Windows-Family-Threads

Dr. Tarek Helmy, ICS-KFUPM 66

P-Threads

• Traditional Unix's are multi-tasking OSs.

• UNIX permits a user to run multiple processes with single thread per each simultaneously.

• Each process has its own address space, with its own copies of its variables, which are
completely independent.

• This independence, while providing memory protection and therefore stability, causes
problems when you want to have multiple processes working on the same task/problem.

• The cost of switching between multiple processes is relatively high.

• For these reasons, and others, threads or Light Weight Processes (LWP) can be very useful.

• Threads share a common address space, and are often scheduled internally in a process,
thereby avoiding a lot of the inefficiencies of multiple processes.

• A very popular API for threading an application is Pthreads, also known as POSIX threads

• The Pthread library describes general thread behavior, and the functions which control
threads.

• Libraries implementing Pthreads specification are restricted to Unix-based systems such as
Solaris 2.

• Pthread library should be included

• Some Pthread attributes include:

– A thread has a priority for scheduling

• Threads may use several scheduling methods, some of which use priority.

– A thread may have local or global scope of contention

• It may compete with all threads in the system for CPU time, or it may compete only
with threads in the same task (process).

Dr. Tarek Helmy, ICS-KFUPM 67

The End!!

Thank you

Any Questions?

