
Dr. Tarek Helmy, KFUPM-ICS
1

Chapter 11: File System Implementation

Dr.Tarek Helmy El-Basuny

Week 13

Operating Systems ICS 431

Dr. Tarek Helmy, KFUPM-ICS
2

Chapter 11: File System Implementation

• How are the file system modules implemented and organized?

• What kind of on-disk and in memory data structures used to implement a file

system?

• How disk blocks are allocated to files so that disk space is used effectively and

files can be accessed quickly?

– There are three allocation methods:

• Contiguous Allocation

• Linked Allocation

• Indexed Allocation

• How does the file system manage the free blocks?

• How to improve the efficiency, performance, and recovery of the file system?

Dr. Tarek Helmy, KFUPM-ICS
3

File System Modules Organization: Layered Approach

• File system modules organized into layers where:

• Each layer uses the features of lower layers to offer new

features to the upper layers.

• Application Programs: The programs that are making a file request.

• Logical file system: Manages the file-system through the FCB,

Directory Structure Table, Protection and Security issues.

• File-organization module:

• Reads information about the file from its FCB (i.e. logical blocks

locations)

• Translates block’s logical addresses to physical addresses.

• Manages the free spaces on the disk.

• Basic file system module:

• Issues high level commands to a specific device driver to read &

write physical blocks. i.e. (drive 1, cylinder 60, track 4, sector 10)

• I/O control:

• Acts as a translator, it uses device drivers and interrupt handlers

to transfer information between the MM and the disk system.

• It receives high level commands i.e. retrieve specific block and

outputs low level instruction.

developer
Highlight
how I/O controller can send the data to the main memory before translatting it?
Should it go through File-Organization module first?

Dr. Tarek Helmy, KFUPM-ICS
4

File System Implementation: On-Disk Structure

• Several on-disk and in memory data structures are used to implement a file

system. These structures vary depending of the OS and the file system.

• The on-disk data structures include:

• Boot Control Block: It contains:

• Information needed by the OS to boot. If the disk does not contain an

OS, this block will be empty. It is in zero block of first partition. It is

called boot block in the Unix File System (UFS) and Partition boot sector in

NTFS.

• NTFS stands for New Technology File System. It is more better than

FAT/FAT32, it supports Unicode filenames, proper security,

compression and encryption.

• Volume Control Block: it contains:

• Details information about partitions such as the number of blocks in the

partition, size of blocks, free block count and free block pointers.

• e.g., super block in UFS and Master File Table in NTFS.

• Directory Structure Table: Is used to organize the files within the directory.

• File Control Block: It contains:

• File attributes such as file’s owner, size and location of data blocks, etc.

• It is called inode in UFS.

• In NTFS this information stored within Master File Table, NTFS uses

relational database structure with a row per file.

Dr. Tarek Helmy, KFUPM-ICS
5

A Typical File Control Block

File Control Block (FCB): a storage structure contains information about a file.

(Access Control List)

Dr. Tarek Helmy, KFUPM-ICS
6

File System Implementation: in-Memory Structure

• In-memory Partition Table: Contains information about each mounted

partition.

• Mounting a file system associates it with a directory in the existing file

system tree. once mounted, the file system becomes accessible.

• In-memory Directory Structure: Holds information about recently accessed

directories.

• In-memory System-wide Open-file Table: Contains a copy of the FCB of each

open file.

• In-memory Per-process Open-file Table: Contains a pointer to the opened file

entry of this process in the system-wide open-file table.

• Buffers used to map file’s blocks for reading and writing.

• The in-memory information is used for both file-system management and

performance improvement.

• Caching on desk information speeds up the searching process in the data

structures used to implement the file system.

Dr. Tarek Helmy, KFUPM-ICS

Virtual File System

• Modern OSs must support multiple types of file systems, i.e. (Hierarchical File

System or HFS for Mac OS), (FAT, NTFS for Windows), (Ext* family for Linux),

Network File Systems, Flash File System, Tape File Systems, etc.).

• Virtual File Systems (VFS) provide an object-oriented way of implementing file

systems.

• A VFS is an abstraction layer on top of a more concrete file system.

• VFS used to bridge the differences in file systems, so that applications can access

files on local file systems of those platforms without having to know what type of file

system they are accessing.

• The VFS allows client applications to access different types of concrete file systems

in a uniform way.

• A VFS can be used to access local and remote storage devices transparently without

the client application noticing the difference.

Dr. Tarek Helmy, KFUPM-ICS
8

Disk Blocks Allocation Methods

• Allocation method refers to how disk blocks are allocated to files

so that disk space is used effectively and files can be accessed

quickly. There are three methods:

• Contiguous allocation

• Linked allocation

• Indexed allocation

Dr. Tarek Helmy, KFUPM-ICS
9

Contiguous Allocation of Disk Space

• A file occupies contiguous blocks on

disk.

– This is similar to contiguous

allocation of the main memory to

a process’s pages.

• Efficient because it offers random

access to any location in a file.

– Block i of a file is located at b+i

where b is the starting location

of the file.

• Faster in accessing as blocks will be

quickly read one next to the other. It

means the conversion of logical to

physical address will be easy.

• When a new file is to be written, the

file system determines where to put

it.

– Algorithms include best-fit and

first-fit (which is most common).

Dr. Tarek Helmy, KFUPM-ICS
10

Drawbacks of Contiguous Allocation

• Fragmentation

– “ Contiguous blocks” may be too big for a given file and therefore
a small fragment is left. Therefore,

• Compaction/de-fragmentation will be used occasionally to eliminate
fragments.

– This requires a disk down time.

• When the file is first created, its size must be provided or estimated.

– Program sizes can be pre-determined, but data files can not.

– If the estimation is too low, sufficient space will not be made
available later (specially if best fit was used), if it is too high,
internal fragmentation occurs.

Dr. Tarek Helmy, KFUPM-ICS
11

Linked Allocation

• File blocks are going to be scattered
across the disk (non-contiguously) where
one block points to the next block in the
file.

• Each block contains a pointer to the next
block and the last block contains a NIL (-1)
pointer.

– Files can grow or shrink without
fragmentation and without the need
to know the file size in advance.

– No waste of space except for pointers.

• Pointers take up a great portion of the file
space.

– Perhaps as much as 1% of storage is
now pointers.

• This method does not support random
access into a file block.

– Instead, sequential access must be
performed from the first block,
following pointers.

Dr. Tarek Helmy, KFUPM-ICS
12

• Advantages

• This method does not suffer from external fragmentation, every block wherever

it is can be linked and used.

• This makes it relatively better in terms of disk space utilization.

• Any free block can be used to satisfy a request.

• There is no need to declare the size of a file when that file is created.

• A file can continue to grow as long as there are free blocks

• Disadvantages

– Long seek time is needed to access every block individually, because the

file blocks are distributed randomly on the disk.

– This makes linked allocation slower (unless FAT is used and cached).

– A lot of space used for pointers of the blocks,

• One way of solving this problem is to cluster the blocks and to use

pointers for clusters not for blocks.

– Does not to support direct-access.

– It is not reliable, since the pointers are linked, if a pointer lost or damaged a

trap will occur.

Linked Allocation Advantages and Disadvantages

Dr. Tarek Helmy, KFUPM-ICS
13

File-Allocation Table (FAT)

 Instead of having the pointer to

the next block as a part of the

block itself, why do not we have

a file that contains the pointers

only.

 Each entry in the FAT contains

the block number of the next

block in the file.

 Unused blocks are indicated by

a 0 table entry.

 Example: file consisting of disk

blocks 271, 618 and 339.

 The FAT can be cached or can

be protected or copied to

enhance the reliability.

developer
Highlight
What effect does it make in terms of the speed of access?

Dr. Tarek Helmy, KFUPM-ICS
14

Indexed Allocation

• Can we get the benefits of both

contiguous and linked allocations.

• Allocation of blocks is still scattered

across the disk like linked, but access to

each block is provided by an index

where we can support random access.

• Each file has its own index of pointers.

– This allows random access to a

given block without external

fragmentation.

• Each file’s index is stored in one block

on disk and pointed to by the directory.

– If a file can be stored in n block s,

then the file can only consume n+1

blocks, 1 block for the index.

A view of the linked list

Dr. Tarek Helmy, KFUPM-ICS
15

Disadvantages of Indexed Allocation

• Problems with the indexed allocation method are:

• If a file can be stored in n blocks, then the file can needs n+1

blocks, 1 block for the index.

• For very small files, say files that expand only 2-3 blocks, the

indexed allocation would keep one entire block (index block) for

the pointers which is inefficient in terms of memory utilization.

• For files that are very large, single index block may not be able

to hold all the pointers. One proposed solution is to use two or

more index blocks together for holding the pointers. Every index

block would then contain a pointer or the address to the next

index block.

Dr. Tarek Helmy, KFUPM-ICS
16

Summary of Allocation Methods

• Contiguous Allocation:

– Efficient because it offers random access to any location in a file

– This method suffers from both internal and external fragmentation. A
block may be too big and therefore a small internal fragment is left. Or
some blocks may not be used and external fragment will be left also.

– When the file is first created, its size must be estimated. Increasing file size
is difficult because it depends on the availability of contiguous memory at a
particular instance.

• Linked Allocation:

– Files can grow or shrink without fragmentation and the need to know the
file size in advance.

– It does not support random access.

– Pointers take up a great portion of the file space.

– Not reliable as pointers may be lost or damaged and causes trap errors.

• Indexed Allocation:

– Allocation of blocks is still scattered across the disk like linked, but access
to each block is provided by an index rather than linked pointers.

– Each file has its own index of pointers, this allows random access to a
given block without external fragmentation.

– If a file can be stored in n block s, then the file can only consume n+1
blocks, 1 block for the index regardless the size of the file.

Dr. Tarek Helmy, KFUPM-ICS
17

Selection of Allocation and Access Methods

• Source code files that need to be compiled should be sequentially

accessed, while data base files should be randomly accessed.

• Media files needs to be contiguously allocated for faster access

(requires only one access to get a disk block, keep the initial address

in memory and increment it).

• For linked allocation, access the ith block needs i disk access.

• Some systems use contiguous allocation for small files (up to 4 blocks)

and automatically switch to indexed allocation if the size of the file

grows.

• The type of access to be made must be declared when the file is

created.

– A file created for sequential access will be linked and can not be

used for direct access.

– A file created for direct access will be contiguous and can support

both direct and sequential access but its maximum length must be

declared when it is created and the OS provide algorithms to

support both methods.

Dr. Tarek Helmy, KFUPM-ICS
18

Free Space Management

• The file system must keep track of the free disk space,

• The operating system maintains a free-space list.

• The free-space list records all free disk blocks, those not allocated to

files or directories.

• The list must be managed so that a new block can easily be

allocated and deleted file`s space can be returned to this list.

• To create a file, OS searches the free space list for the required

amount of space and allocates that space to the new file.

• This allocated space is then removed from the free list.

• When the file is deleted, its disk space is added to the free list.

• How does the file system know where a free block of disk space is

located? There are two ways to implement that.

Dr. Tarek Helmy, KFUPM-ICS
19

Bit Vector

• Using a bit vector to indicate every block in the file system.

• 1 indicates a free block and 0 indicates a used block.

• Example, a disk of 32 blocks where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13,
17, 18, 25, 26, 27 are free and the rest are allocated. The bit vector
map is:

00111100111111000110000001110000

• To allocate a new block, OS looks for the first 1 and changes it to a 0.

• This can be done by looking for the first word of first bit that is not 0.

• Block number calculation = (number of bits per word) * (number of 0-
value words) + offset of first 1 bit.

• The Macintosh OS uses this technique for managing the free blocks.

• Unfortunately, bit vectors are inefficient unless the entire vector is kept in
memory, this will consume more memory specially for large disks.

• Bit map requires extra space, example:

– Disk size = 240 bytes (1 Terabyte)

– Block size = 215 bytes = 32 KB

– Bit vector size = 240/215 = 225 bits (or 22 * 23 * 210 * 210 =4 MB)

Dr. Tarek Helmy, KFUPM-ICS
20

– The Bit victor problem:

• The bit victor stored on disk and will be cached in memory

• The copy in memory and on disk may differ.

• May lead into inconsistency where bit [i] = 0 (used) in

memory and bit [i] = 1 (free) on disk.

– Solution:

• Set bit [i] = 0 in memory.

• Allocate block [i] to the disk.

• Set bit [i] = 0 in memory.

Bit Vector Variations

developer
Highlight
in the disk??

Dr. Tarek Helmy, KFUPM-ICS
21

Linked List

• Another way to manage the free-blocks is to link together all the free

blocks, keeping a pointer to the first free block in a special location

on the disk and caching it in memory.

00111100111111000110000001110000

– The first free block contains a pointer to the next free block and

so on.

• Allocating one block is simple.

• Two variations to avoid the previous problem:

– Grouping: If we have n free blocks, store pointer to the n-1 free

blocks in the first free block, where the last pointer points to

another n blocks, etc…

– Counting: Store a pointer and an integer which denotes how

many contiguous blocks are available.

Dr. Tarek Helmy, KFUPM-ICS
22

Linked Free Space List on Disk

• Os keeps a pointer to block 2 as a first free block, block 2

contains a pointer to block 3, block 3 points to block 4, and

so on...

Dr. Tarek Helmy, KFUPM-ICS
23

Efficiency and Performance

• Efficiency depends on:

– Disk allocation and directory algorithms.

– Types of data kept in file’s directory entry.

• Disks are commonly a system bottleneck

– Ways to improve performance include

• Cache disk requests by including a small cache in the device

itself.

• Use all currently unused main memory as a disk spool for disk

caching.

• Include a variety of cache replacement strategies.

• Include a RAM Disk

– Set aside part of RAM to act as a small disk

– Since RAM is volatile, a power outage destroys information.

Dr. Tarek Helmy, KFUPM-ICS
24

Consistency Checking

• The caching of certain data structures in memory can speed up the

performance, but what happens in the result of a system crash?

• All volatile memory structures are lost, and the information stored on the hard

drive may be left in an inconsistent state.

• A Consistency Checker (fsck in UNIX, chkdsk or scandisk in Windows) is

often run at boot time or mount time, particularly if a file system was not closed

down properly. Some of the problems that these tools look for include:

– Disk blocks allocated to files and also listed on the free list.

– Disk blocks neither allocated to files nor on the free list.

– Disk blocks allocated to more than one file.

– The number of disk blocks allocated to a file inconsistent with the file's

stated size.

– Properly allocated files which do not appear in any directory entry.

– Two or more identical file names in the same directory.

– Illegally linked directories, e.g. cyclical relationships where those are not

allowed, or files/directories that are not accessible from the root of the

directory tree.

developer
Highlight

Dr. Tarek Helmy, KFUPM-ICS
25

Recovery of Lost Data

• In order to recover lost data in the event of a disk crash, it is important to

conduct backups regularly.

• Files should be copied to some removable medium, such CDs, DVDs, or

external removable hard drives.

• A full backup copies every file on a file system.

• Incremental backups copy only files which have changed since some

previous time.

• For example, one strategy might be:

– At the beginning of the month do a full backup.

– At the end of the first and again at the end of the second week, backup all

files which have changed since the beginning of the month.

– At the end of the third week, backup all files that have changed since the

end of the second week.

– Every day of the month not listed above, do an incremental backup of all

files that have changed since the most recent of the weekly backups

described above

• Recover lost file or disk by restoring data from backup.

• A useful backup strategy is required!

Dr. Tarek Helmy, KFUPM-ICS
26

Recovery

• In a system crash, some files may have been opened and

partially altered.

– A consistency checker is often used to determine lost files

and tries to fix them (compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies.

• Use system programs to back up data from disk to another

storage device.

• Recover lost file or disk by restoring data from backup.

– Backup usually stored on external HDs

• A useful backup strategy is required!

Dr. Tarek Helmy, KFUPM-ICS
27

The End!!

Thank you

Any Questions?

