
Dr. Tarek Helmy, KFUPM-ICS 1

File System Interface

Dr. Tarek Helmy El-Basuny

Week 12

Operating Systems ICS 431

Dr. Tarek Helmy, KFUPM-ICS

Objectives of this Chapter

• To explain the functions of the file system component of the OS,

• To describe the interfaces to the file system,

• To discuss the design issues of the file system,

• To explore the file-system sharing & protection methods.

2

Dr. Tarek Helmy, KFUPM-ICS 3

File-System Interface

• What is file system?

• File Concepts

• File structure, File types, File attributes, File operations.

• File Access Methods

– Sequential access, Direct access, Relative/Index access methods

• What is directory structure?

• Attributes of a Directory Structure.

• Operations Performed on a Directory.

• Directory Structure methods

• Single level directory,

• Two levels directory,

• Tree structure directories,

• Acyclic graph directories.

• File Sharing

• Multiple users access and consistency semantics.

• Protection

• Modes of Access

• Access Control Matrix

Dr. Tarek Helmy, KFUPM-ICS

What is File System?

• It is a component of the operating system which consists of:

– An interface that allows the users to store, retrieve and update a set of files

and directories.

– The data structures and algorithms used to implement that interface.

• From a user’s point of view, the file system is perhaps the most visible part

of the OS because:

– The user wants quick access to the files,

– The user needs to guarantee that the files will not be corrupted,

– The user needs to secure the files from non authorized access.

• Functions of the File System:

– Identifies and locates a selected file or directory,

– Organizes the location of all files plus their attributes,

– Supports user access control on a shared file system,

– Allocates files to free disk space,

– Manages free storage on the disks for available files,

– Manages the buffering blocks in main memory,

– Grouping files into separate collections/folders/directories.

– Interacts with the end user.
4

Dr. Tarek Helmy, KFUPM-ICS 5

File Structure

• A file is a collection of data stored in one unit, and identified by a filename. or

• A file is a collection of letters, numbers and special characters with a name associated to it

called “filename”.

• File Concepts:

• File Structure, File Types Implementation, File Attributes, File Operations.

• File structure usually defined by the SW that creates the file. It may be a source code file,

a database file, a document file, a text file, a media (audio or video) file, an image file, a

library file, etc …

– A text file:

• Contains a sequence of characters, numbers and special characters organized

into lines.

– A source code file:

• Contains a collection of code, possibly with comments, written using a certain

programming language and specifies the actions to be performed by a computer.

– An object file:

• Contains a sequence of bytes organized into blocks understandable by the

system`s linker and is usually not directly executable.

– An executable file:

• Contains a series of code sections linked with the needed libraries that the loader

can bring into memory for execution.

Dr. Tarek Helmy, KFUPM-ICS

File Type Implementation

• A common technique for implementing the file type is to include the type as a part

of the file identity. The extension helps the user and OS to know the type of a file.

• Using this technique helps the OS to avoid some inconvenient commands.

6

Dr. Tarek Helmy, KFUPM-ICS 7

File Attributes

• A file has certain attributes, which vary from one OS to another but typically include:

• Name: is a string of characters, some OS differentiate between upper and lower

characters while others no, file name is the only information kept in human-readable

form.

• Type: is needed for operating systems that support different types.

• Location: is a pointer to the storage device and to the location of the file on that

storage device.

• Size: the current file size (in bytes, words or blocks), and the maximum allowed size

of a file are included in this attribute. Is there a limit of the file size?

– If the drive containing your file is formatted with NTFS (which is the default in

Windows 7), then the maximum file size is 16 TB.

• Protection/access control: this attribute controls who can do reading, writing, and

executing the file.

• Time, date, and user identification: time and date of creation, last modification

and usage. This data is used for protection, security, and usage monitoring.

• All file’s attributes are stored in the “Files Control Block” (FCB)

• Directory structure: keeps information about files maintained on the disk.

• Each file has an entry consists of a file name and its unique identifier that identifies

the other attributes of the file.

• The size of the directory structure itself may be megabytes.

developer
Highlight
are the size and type also human-readable?

Dr. Tarek Helmy, KFUPM-ICS

More File Attributes

8

Dr. Tarek Helmy, KFUPM-ICS 9

File Operations

• The operations that can be performed by the OS on files are:

• Create a file: A space in the file system must be found for the file and an entry

for the new file must be made in the directory structure.

• Write a file: A system call specifies both the name of the file and the

information to be written. The OS searches the directory to find the location of

the file and writes its information. The OS needs to keep a write pointer.

• Read a file: A system call specifies both the name of the file and where in

memory the next block of the file should be put. The OS needs to keep a read

pointer.

• Delete a file: Searches the directory structure for the file, having found it then

release all the file space so that it can be used by other files.

• Truncate a file: Means delete the content of the file but keeps its attributes

with the file length changed.

• Open(Fi): Searches the directory structure on disk for the entry Fi, and moves

the content of that entry to memory (open file table).

• Close (Fi): Moves the content of the entry Fi in memory to directory structure

on disk.

• Other operations like: Renaming a file, changing the attributes, appending

data, etc…

Dr. Tarek Helmy, KFUPM-ICS 10

Open File Table

• Most of the file operations mentioned involve searching the directory for the

entry associated with the identified file.

• To avoid the time of searching the disk, the OS keeps in MM a small table

containing information about all opened files (open-file-table).

• When a file operation is required, the file is specified via an index into this

open-file-table, so no searching on disk is required.

• When the file is closed, the OS removes its entry from the open-file-table.

• The implementation of open-file-table only in multi-user or multi-processing

systems like Unix is not enough. Multi-users may open the file at the same

time. In this case the OS creates two levels of tables: a per-process/user

open-file-table and a system-wide open-file-table .

• There is an entry for the open file in the per-process/user table and points to

another entry within the system-wide table.

Dr. Tarek Helmy, KFUPM-ICS 11

Open File Table

File name Location on Disk File Open Count …….File Pointer …..

File Pointer …..

System-Wide Open File TableOpen File Table for Process/User B

Open File Table for Process/User A

(a) refers to opening a file. (b) refers to reading a file.

Dr. Tarek Helmy, KFUPM-ICS 12

Open File Table Contents

• Several pieces of information are associated with the open file:

• File name: The name of the file.

• File pointer: The system must track the last read-write location as a current file

pointer position.

• File open count: As files are closed, the OS must reuse its open file entries (or

it can run out of space in the table). Multi-processes/users may open a file, the

OS must wait for the last file to close before removing the entry from the open

file table. This counter tracks the number of opens and closes.

• Access rights: The access mode of each file by the process is stored on the

per-process table so the OS can deny or allow the I/O requests.

• Disk location of the file: Most file operations require the system to modify data

within the file. The information needs to locate the file on disk is kept in

memory to avoid reading it from the disk every time.

developer
Highlight
Disk Location of the file VS File Pointer ??

Dr. Tarek Helmy, KFUPM-ICS

Creating a File

• To create a new file, the SW application calls the file system, the file

system then:

– Allocates a new File Control Block (FCB),

– Reads the appropriate directory into memory,

– Updates the directory with new file name and a pointer to its FCB,

– Writes it back to the disk for consistency.

• Some operating systems (UNIX) treat a directory exactly as a file by

using the same system call,

• Other operating systems (Windows) implement separate system calls

for files and directories and treat directories separate from files.

13

Dr. Tarek Helmy, KFUPM-ICS

Opening a File

• To open a file for any I/O operation:

– The open system call passes the file name to the file system.

– The directory structure (usually cached) will be searched for the

given file name,

– Once the file is found, the FCB is copied into the system-wide open-

file table in memory,

– An entry is made in the per-process open-file table, with a pointer to

the system-wide open-file table,

– The open system call returns a pointer to the appropriate entry in the

per-process open-file table,

– All file operations are performed via this pointer (file descriptor in

Unix, file handle in Windows).
14

Dr. Tarek Helmy, KFUPM-ICS

Closing a File

• After completing all I/O operations on a file, it should be closed.

– The per-process table entry will be removed and the system-wide

entry’s open count will be decremented.

– When all users that have opened the file close it, the updated file

information is copied back to the on disk directory structure and the

system-wide open-file table entry is removed.

• Some systems use a caching scheme where all information about an

open file, except for its actual data blocks, is in memory.

15

Dr. Tarek Helmy, KFUPM-ICS 16

File Access Methods

• The file`s information must be read into memory when it is used. OS provides one or more
access methods.

• Sequential access

– File’s content is read/written in sequential order, one record after the other.

– To access 50th record in a file, it must read the record 49th first.

– File’s read/write pointer specifies file location for each read/write.

– It is the most common mode of compilers.

• Direct (Random) access

– Blocks can be read/written in random order, we may read block #14 then 7.

– It is useful for immediate access to large amount of information.

– Application specifies file location for each read/write, i.e. DB files.

– The file operation must include the block number as a parameter.

– The block number is used as an index to find the beginning of the file.

• Accessing data sequentially is much faster than accessing it randomly because of the way in
which the disk hardware works.

• Sequential Access

read next

write next

reset

no read after last write

Dr. Tarek Helmy, KFUPM-ICS 17

Sequential Access on a Direct/Random-Access File

• Sequential Access to files: to reach a particular record, all the preceding records must be

sequentially read.

• Direct Access to files: we can reach to a particular record in the file directly and this

facilitates the operations of reading, deleting, updating and inserting records.

• OSs support both Direct and Sequential file access.

• If we simply keep a variable Current Position ”CP” that defines the start of reading or

writing, then we can simulate sequential file operations on a direct access as followings:

• Direct Access

read n

write n

position to n

read next

write next

rewrite n

Dr. Tarek Helmy, KFUPM-ICS 18

• Relative Access files: in order to support random as well as sequential file access. The

OS uses an index table contains records that represents the location of file relative to

where the file begins.

• The index table contains pointers to various blocks.

• The OS first searches the index table and then uses the pointer to access the desired

block of file direct.

• The user enters key field

• Disk address computed from key field

• The record then accessed directly.

Relative Access Files

Dr. Tarek Helmy, KFUPM-ICS 19

Directory Structure

• Directory Structure is a collection of nodes containing information

about all files in the file system.

• It describes the way in which the files are organized.

• Both the Directory Structure and the Files Control Blocks reside on disk.

• Backups of these two structures are cashed on memory for fast access.

• Attributes in a Directory Structure

• Name

• Type (rar, zip, etc.)

• Address/Location

• Current length

• Maximum length

• Date of last access

• Date of last update

• Owner ID

• Protection information

node 1

node n

F 1 F 2
F 3

F 4

F n

Directory

Files

developer
Highlight

developer
Highlight
why directory structure stores those attributes while it's already existed in FCB

Dr. Tarek Helmy, KFUPM-ICS 20

Operations Performed on a Directory

• Search/Navigate for a file: Search a directory to find an entry of a particular file.

• Create a file in a directory: New file can be created and added to the directory.

• Delete a file from a directory: When a file is no longer needed, we can remove it

from the directory.

• Append a file into a directory: Adding/Moving a file into the directory.

• List files in a directory: List the files in a directory.

• Rename/resize a file: The name/size of the file must be changeable to allow

changing if the name/contents have been changed.

• Traverse the file system: How many files and directories are available within a

directory.

• Backup: Save regularly the contents of the entire file system to auxiliary memory

to avoid troubles in case of a system failure.

Dr. Tarek Helmy, KFUPM-ICS 21

Organize the Disk (Logically) into Partitions and Directories

• Why do we divide disks into partition?

• With multiple partitions:

– You may install different OSs on your machine.

– You can mount one or more of your partitions as

read-only.

– If something happen to a file system on a

partitioned system you would probably only lose

files on a single file system.

– It reduces the time required to perform file system

checks.

– It minimizes the seek time.

• Why do we create directories on disks?

• Efficiency: Locating a file quickly.

• Avoid naming confliction:

– Two users can have same file name for different

files. The same file can have different names.

• Grouping: Logical grouping of files by properties,

(e.g., all Java programs, all games,)

Dr. Tarek Helmy, KFUPM-ICS 22

Single-Level Directory Structure

• Only files are there in the directory.

• Advantages:

– The simplest directory structure,

– Easy to implement, and understand.

• Disadvantages of Single-Level Directory :

• Naming problem when the number of files increase or the

system has more than one user.

• Grouping problem: hard to group related files

Dr. Tarek Helmy, KFUPM-ICS 23

Two-Level Directory

• To avoid the naming confusion, a separate directory for each user should

be created.

• Each user has User’s File Directory (UFD).

• Each UFD lists only the files of a single user.

• When a user`s job starts, the system’s Master File Directory (MFD) is searched.

• The MFD is indexed by user`s name or account, each entry points to user’s UFD.

• Files names are unique within the UFD only, so different users may have the

same file names in their UFDs.

• Two-level directory can be thought of as a tree. The root is the MFD and the

leaves are the UFD, the descendents of the UFD are the files.

• Each file in the system has a path consists of the user’s name & file’s name.

• Efficient searching: This structure effectively isolates one user from another

Dr. Tarek Helmy, KFUPM-ICS 24

Tree-Structured Directories

• Two-level directory can be extended to multi-level tree structure.

• A directory contains a set of relevant files or subdirectories.

• A directory is simply another file but treated in a special way.

• One bit in each directory entry defines the entry as a file or as a subdirectory.

• The current directory contains the files that are of current interest and will be

searched first for any file reference.

• Handling (deleting/creating) directories controlled by some system calls.

Dr. Tarek Helmy, KFUPM-ICS
25

Example of Tree-Structured Directory

Dr. Tarek Helmy, KFUPM-ICS

Tree-Structured Directories

• To access a file, the user should either:

– Go to the directory where file resides, or

– Specify the path where the file is

• Path names can be absolute (given the path starting from the root, i.e. helmy/ICS 431/

week12-FS.ppt) or relative (giving the directory name on the path, i.e. week12-FS.ppt if

we are in the same directory).

• Creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail”  deleting the entire sub-tree rooted by “mail”

26

Dr. Tarek Helmy, KFUPM-ICS 27

Acyclic-Graph Directories

• A tree structure prohibited sharing of files or directories.

• Sharing is important as some users may share the same projects and want to

access the same files or directories without recreating them again.

• The acyclic-graph directory allows sharing of subdirectories and files.

• With Acyclic-Graph Directories:

– Only one actual copy of the file or directory is stored, so any changes

made by one person will be immediately visible for the other.

– Can be accessed through one or more paths.

– The deletion of a link should not affect the original file; only the link is

removed.

Dr. Tarek Helmy, KFUPM-ICS 28

Problem of Acyclic Graph Directory

• One serious problem: with using acyclic-graph; is having cycles.

• How do we guarantee that no cycles will be exist? to avoid wasting

the time of searching again and again.

1. Allow only links to files not subdirectories, or

2. Every time a new link is added, use a cycle detection algorithm

to determine whether cycle will be created or no.

Dr. Tarek Helmy, KFUPM-ICS 29

File System Mounting

• Mounting is a process by which the OS makes files and directories on a storage device

available for user to access via the computer's file system.

• Mount allows two file systems to be merged into one. i.e. when you insert a flash derive.

• In some OSs like Unix, and Linux, a file system must be mounted before it can be

accessed.

• The mount command will pass the kernel three pieces of information; the name of the

file system, the physical block device which contains the file system and, where in the

existing file system topology the new file system is to be mounted. In Linux,

• Mount-type device dir (type-device menas the drive, dir menas the directory to be

mounted)

• umount detaches the specified file system(s) from the file hierarchy

(a) Existing. (b) Un-mounted Partition Mount point: /users

Dr. Tarek Helmy, KFUPM-ICS 30

File Sharing

• Sharing of files on multi-user systems is recommended.

• Sharing may be done through:

– User IDs identify users, allowing permissions and protections to be
per-user

– Group IDs allow users to be in groups, permitting group access
rights

• Networking allows file system access/sharing between systems

– Manually through programs like FTP

– Automatically through distributed file systems

– Semi automatically through the world wide web

• Consistency semantics: it is an important aspect in evaluating any
file system that support file sharing.

– Unix allows any writing to the shared file to be visible immediately
to other users.

– Some OSs allow any modification to be visible in the next
access sessions.

– Some OSs allow immutable shred file, once the file declared as
immutable, it can not be modified.

Dr. Tarek Helmy, KFUPM-ICS 31

File Sharing Implementation

• A common way to implement shared files and subdirectories is to create a
new directory entry called a link.

• A link is a pointer to another file (indirect pointer) or subdirectory, it may be
relative or absolute.

• When a reference to a file is made, the OS searches the directory, if the
directory entry is marked as a link, then the name of the real file or directory is
given.

Good for linking files on other machines and save disk space.

 Disadvantages

 Takes longer to lookup as the path is traversed

 The file pointed to can be deleted or changed, if files have been
deleted, links should be also deleted to avoid dangling pointers.

 Backup might do multiple copies

• Another common way of implementing shared files is to duplicate all
information about them in both sharing directories.

• The problem here is to maintain consistency if the file is modified.

Dr. Tarek Helmy, KFUPM-ICS 32

Protection & Reliability

• File owner/creator should be able to keep it safe from physical

damage (reliability) and improper access (protection).

• Reliability: Can be provided through duplicate copies of files regularly.

• Protection: Can be provided in many ways like prohibited access or

access list with some operations may be controlled:

– Read: read from the file

– Write: write the file

– Execute: load the file into memory and execute it.

– Append: write new information at the end of the file

– Delete: delete the file and release its space for reuse.

– List: list the name and attributes of the file

Dr. Tarek Helmy, KFUPM-ICS 33

Access Lists and Groups

• Mode of access: read, write, execute.

• Consider an author who is writing a book, he has three co-authors to

help him, the text of the book is saved in a file named book. The

protection of the file book is as follows:

– Author should be able to invoke all operations on the file.

– Coauthors should be able to read and write but not delete the file.

– All other users should be able to read but not write.

– The Unix/Linux defines 3 bits R (read) W (write) X (execute) or –

means nothing to control the access and 3 bits to define the users,

i.e. O (owner) G(group) U(universe/all).

• Three classes of users

RWX

a) Owner access 1 1 1

RWX

b) Group access  1 1 0

RWX

c) Universe access 0 0 1

Dr. Tarek Helmy, KFUPM-ICS 34

A Sample Unix/Linux Directory Listing

• Let us explain the meaning of each entry in the above table.

• In the first position, - stands for a file while d stands for a directory

• rw- refers to the authority of the owner, who can read and write only. Followed by rw- authority of

the group then r-- the authority of the universal users who can only read. Note that permission

can be changes using chmod command.

• 1 refers to the number of memory blocks

• pbg is the name of the owner followed by the staff as a group name. chown used to change the

owner of a file while the chgrp command used to change the group name of the file owners.

• 31200 are the number of bytes used in that file.

• Next is the date of creation and the name of the file.

Dr. Tarek Helmy, KFUPM-ICS 35

Windows Access-Control-List Management

Dr. Tarek Helmy, KFUPM-ICS 36

The End!!

Thank you

Any Questions?

