RS agadaTh

Fldoe L@l

Welcome to the ICS 431 sessions and let us

collaborate to understand and to be knowledgeable in the
“Operating Systems”

Llnux& Ok W
Apple VVindows
= == === _ T ubuntu AN
L crms MS &

—Talr— 11—) Mac OOS
FEr BlackB8erry, OSZ g, g2

L L L OF

Dr. Tarek Helmy, ICS-KFUPM B agaaam

RS agadaTh

% 1963 ATAYT §
—,,, .
2557y 0 v

Fldoe L@l

Operating Systems ICS 431

Ch. 4. Multi-Threading Programming

Dr. Tarek Helmy El-Basuny

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 2 B g a0

Ch 4: Multi-Threading Programming

RS agadaTh

* Processing Modes in the OSs.
Threads Definition
« Thread’s Control Block
 What does a thread share with the parent process?
» Benefits of Threads vs. Processes
« Examples of Multithreaded Processes
 Thread'’s Life Cycle
 User's and Kernel's Level Threads
 Combining ULT and KLT Models
— Many-to-One
— One-to-One
— Many-to-Many
« Threading Issues
— Thread Cancellation, Threads Pool, Signhal Handling
» Threads Scheduling
— Priority Scheduling, and Priority Inversion/Inheritance Mechanisms
* Threading in Different Platforms:
— Windows, Solaris, Linux, Mac OS, etc.

Fldoe L@l
[]

L L L OF

Dr. Tarek Helmy, ICS-KFUPM S mMaaaamm

A Process Concept

RS agadaTh

« A process is a key OS abstraction that users see.

« The environment you interact with when you use your computer is
built up out of processes.

— The power point we use IS a process.
— The browser you use is a process.
— The shell you type commands into is a process.

— When you execute a program you have just compiled, the OS
generates a process to run that program.

Fldoe L@l

« Let us think of the browser as a process.
« Does it support concurrency (i.e. browsing a page, down-loading,
playing a video, ...)?
 |s it a responsive process?
* If yes, why?

— Because it is a muli-threaded process.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 4 B g a0

Processing Modes

RS agadaTh

 In uni-processing mode: the Os supports a single process to run.

In concurrent processing mode: the OS is sharing a single processor among
several processes through interleaving I/O pound with CPU pound processes.

* In Multiprocessing/Multitasking mode: the OS is sharing multiple processors
among several processes (the # of processor is less than the # of processes).

* In parallel processing mode: The Os uses more than one processor to
simultaneously run multiple processes in parallel (the # of processor is more than
or equal to the # of processes).

o Multithreading is a kind of multitasking/multiprocessing with low overheads and no
protection of tasks from each other, all threads share the same address space
(of the parent process) in memaory.

e Processes can do several things concurrently by running more than one thread.
e A process (Web Browser) may consist of the following threads:

e GUI thread, I/O thread, Computation thread, etc.
e A word processing consists of multiple threads, i.e. spell checker, auto save, ..

Fldoe L@l
[]

e o
Thwo
Threads

A Program = I?I A Program ~<:

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 5 B agaaam

Sequential vs. Parallel Processing Modes

instructions

e i

= =

Fldoe L@l

Sequential Processing

instructions
s =3 e

=

Parallel Processing

Processes running on multiple-processors may be Independent or
Dependent.

No synchronization is required for independent processes but it is needed for
dependent processes.

 We are going to study latter different synchronization methods.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 6 Whaaamnm

Multi-Processing with Single Processor Mode

RS agadaTh

 Refer to, single-processing, concurrent-processing, multi-processing, single-
processing with multithreading, multi-processing with multithreading modes
we discussed earlier in the course?

Fldoe L@l

[Processor]

The Operating System

assigns processor's time | X __________________
to each Process based
on a certain policy. X
X X /

* Processor time will be shred among concurrently running processes.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 7 MAaaamm

The Multi-Threading Mode

RS agadaTh

* Processor time assigned to Process A will be concurrently shred among its threads
(TO, T1, T2) such that only one thread at a time will be executed.

Fldoe L@l

[Processor]

A Threading
library creates
threads and
assigns
processor time
to each thread

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 8 MU aaaum

Multi-Threading in Multi-Processors Mode

RS agadaTh

* Processors time assigned to Process A will be shred among its threads. Parallel or
concurrent execution will be supported based on the # of threads and the # of
processors.

Fldoe L@l

Processor 1 h

Processor 3

[
| Processor 2 |
[
[

Processor 4 h

L L L OF

Dr. Tarek Helmy, ICS-KFUPM O MmO aaaum

RS agadaTh

What is a Thread?

Fldoe L@l

Dr. Tarek Helmy, ICS-KFUPM 10 B agaaam

Athread is a code section in a process that can execute concurrently with
other sections in the parent process (multithreading).

Thread/Lightweight Process/Execution Context is a single sequential flow
of control within a process.

A thread likes a sequential program, it has:

 Abeginning, a sequence of execution, and an end.

 Has a single point of execution, at any given time.

A thread cannot live on its own, it must live within a process.

Each process has its own memory space, but threads share memory
space of the parent process.

Therefore processes are “heavyweight” while threads are “lightweight”.

A Browser is a multi-threaded program. The Browser can perform multiple
simultaneous tasks:

« Fetch the source code of the main page,

« Download and play a media file,

« Activate separate threads for other parts of the page,

 Each thread sets up a separate connection with the server:

« Uses blocking calls
« Each part (an image) fetched separately and in parallel.

L L L OF

Thread’s Control Block

RS agadaTh

« Thread Control Block (TCB) is a data structure contains thread’s information:
- Thread’s State (ready, or running, or blocked),
 Starting Address (Program Counter),

Fldoe L@l

* Registers, Execution Stack.
« Parent’s process control block contains everything else (e.g. process id,
open files, code segment, global data, etc.)
« TCBis a subset of the parent’s process control block (PCB).
« The parent’'s (PCB) is the union of all TCBs of its children threads.
« When a child thread alters non-private-data/public-data, all other
threads of the process can see this.
Threads communicate via shared variables.

« Afile opened by one thread is available to other threads of the parent

Process.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 11 O agJa0m

msaad
Highlight
Search about it

What does a Thread share with the Parent Process?

RS agadaTh

« Multiple threads within a single process share:
— Process ID (PID)
— Address space
» Code section
« Global data section
— Open file descriptors
— Signals and signal handlers
— Current working directory
— User and group ID
« Each thread has its own
— Thread ID (TID)
— Set of reqisters, including Program Counter and Stack Pointer
— Stack for local variables and return addresses
— Signal mask

Fldoe L@l

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 12 O agJa0m

msaad
Highlight

msaad
Highlight

Single Threaded & Multithreaded Process Models

Dr. Tarek Helmy, ICS-KFUPM 13 B agaaam

L R R
|
|
d Rugister S g Register Register Register
j Counter Counter Counter
o Stack Stack Stack
[Data Files
Code Data Files
| i |
Code
Single Thread
First Thread Second Thread Third Thread
Single Process P with single thread Single Process P with three threads
« Thread Control Block contains a register image, thread priority and thread
state information.

L L L OF

Processes vs. Threads

BRGS0 %n
|
" Which of the following belongs to the process and which to the thread?
- |
. |
- Program code: Process
. Local or temporary data: Thread
Global data: Process
Allocated resources: Process
Execution stack: Thread
Memory management info: Process
Program counter: Thread
Parent identification: Process
Thread state: Thread
Registers: Thread .
a
o
o
<
|
|
|

Dr. Tarek Helmy, ICS-KFUPM 14 O agJa0m

Threads vs. Processes

RS agadaTh

« If two processes want to access shared data structures, the OS must be

involved.

Fldoe L@l

— OS involvement requires system calls, mode switches, extra execution

time.

« Creating new processes, switching between processes, etc. is slower than

performing same operations on threads.

« Two threads of the same process can share global data automatically

without the OS involvement (same as two functions in a single process).

« Compared to using several processes, threads are more economical way

to manage an application with parallel activities.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 15 B agaaam

msaad
Highlight

msaad
Highlight

RS agadaTh

Benefits of Threads

Fldoe L@l

Takes less time
to create a new

thread than to
create a new
process

Dr. Tarek Helmy, ICS-KFUPM

BOagaga0%h

L L L OF

Benefits of Multi-Threaded Processes

RS agadaTh

 Responsiveness: Multithreading allow the process to continue running even
if part of it (a_thread) is blocked or is performing a lengthy operation. To
enable cancellation of separable tasks.

Fldoe L@l

 Speed up the Execution: On a multiprocessor machine, multiple kernel
level threads from the same process can execute simultaneously.

 Resource sharing: Threads share the resources and memory of the process
to which they belong. This allows an application to have several threads
within the same address space.

« Economy: Allocating memory and resources for each process is costly,
while threads within the same process share memory and files.

« Supports of asynchronous processing: Independent parts of an
application that do not need to run in sequence can be threaded,

— 1.e. auto-saving of RAM into disk. A thread schedules itself to come-alive
every 1 minute to do this saving concurrently with main processing.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 17 O agJa0m

RS agadaTh

Benefits of Multithreading

Fldoe L@l

« Multithreaded programs appear to do more than one thing at a time (same
iIdeas as multiprocessing, but within a single program).

— While you are browsing a web page,
— Download several files in the background,
— Play a music file,
« Multithreading is essential for some applications (i.e. games, graphics, ...)
— One thread does the animation,
— Second thread responds to user inputs,
— Third thread is downloading an image.
* From the management point of view:
— Takes less time to create a new thread than a process
— Less time to terminate a thread than a process
— Less time to switch between two threads within the same process

— Since threads within the same process share memory and files, they can
communicate with each other without invoking the kernel.

Dr. Tarek Helmy, ICS-KFUPM 18 B agaaam

L L L OF

RS agadaTh

Example: Multi-Threaded Process

Fldoe L@l

Keyboard

« Word Processor with 3 Threads
— Thread 1: Interacts with user, and gets the pressed characters.
— Thread 2: Reformats the text (in background).
— Thread 3: Periodically backups the file into the HDD.

Four score and seven
years age, owr fathers
brought forth npan this
continent a new nation
conceived in liberty,
and dedicated to the
proposition that all
men are created equal

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
=0 conceived and so
dedicated, can lang
endue. We am met on
a great battlefield of
that war.

We have come 10
dedicate a pertion of
that field as a final
testing place for those
wha here gave theic

lives that this nation
might live. 1t is
altagether fining and
proper that we should
o this.

But, in a larger senss,
wecannot dedicate, we
cannot consecrate we
canmot hallow this
gound The bmve
men, living and dead,

who staggled here
have consecrated it, far
above omr poar pawer
to add or detract. The
world will little note,
mor long remember,
what we say here, but
it can never forget
what they did here.

1t is far 1s the living,
mther, to be dedicated

here ta the unfinished
woik which they who
fought here have this
far so nobly advanced
1t is mther for 18 1 be
here dedicated to the
great task remaining
before e, that fwom
these honored dead we
take increased devotion
o that cavse for which

they gave the last full
measure of devotion,
that we here highly
tesalve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

L

~

Kernel

Dr. Tarek Helmy, ICS-KFUPM

19

Disk

BOagaga0%h

L L L OF

Example: Single Threaded Web Server
S aaaah

« If we have a single threaded server like this:

« How long does the client request wait?

Fldoe L@l

« Isit going to support the responsiveness goal of the OS?

« Is it going to be productive and maximize the throughput?

l l Disk

il

requests Web pages

CGI Web server

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 20 B agaaam

RS agadaTh

Example: Multi Threaded Web Server

Fldoe L@l

 Multi-threaded Web server:

* |s capable of processing multiple simultaneous service requests
in parallel which increases the throughput.

« Gets requests, sends web pages back quickly, be responsive.

« Keep popular pages in cache memory, i.e. some pages much
more popular than others.

Dispatcher

Al

Dispatcher thread

Request dispatched

to a worker thread Server

/

/ &

from the network P

|t Worker thread

> ¢® | pisk
A
Request coming in

Many workers

Operating system

Dr. Tarek Helmy, ICS-KFUPM

L L L OF

21 BOagaann

Other Examples of Multithreaded Programs
S aaaah

Modern OS kernels

— Deal with concurrent requests by mapping each user’s request to
a corresponding thread.

— But no protection needed within kernel.
« Database Servers

— Responsive access to shared data by many concurrent users.
 Network Servers

— Responsive support to concurrent requests from network.

— Multiple concurrent operations; File server, Web server, and
airline reservation systems.

« Parallel Processing (More than one physical CPU)
— Split program into multiple threads for parallelism.
Embedded systems

— Single Program that supports concurrent operations through
multithreading.

Fldoe L@l

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 22 O agJa0m

Programming Assignment

L R R
L
W . Inthe lab, you need to code a Multi-Threaded program that will be able to
: process multiple simultaneous service requests in parallel.
3 « We want to compare Multi-Threaded process with single threaded
d process performance.
u « See the effect of the number of threads on the response time.
Dispatcher Worker
While (1) { Worker_thread(req) {
get_request(&req); fetch_webpage(req,&page);
Stal’t_neW_WOI’ker(I‘eq); return_page(req’ page)’
J }

A

| A4
New Requests » dispatcher i L L

workers

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 23 B agaaam

RS agadaTh

Summary: Threads vs. Processes

Fldoe L@l

A thread has no data or code
segments.

A thread cannot live on its own,
It must live within a process.

There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack.

Inexpensive creation
Inexpensive context switching.

If a thread dies, its stack is
reclaimed.

While one thread is blocked and

waiting, a second thread in the
same task can run.

Multiple threaded processes
use fewer resources.

Dr. Tarek Helmy, ICS-KFUPM

A process has code/data/heap
& other segments.

There must be at least one
thread in a process.

Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers.

Expensive creation
Expensive context switching.

If a process dies, its resources
are reclaimed & all threads die.

If one process is blocked, then
no other process can execute
until the first process is
unblocked.

24 BOagaann

L L L OF

OSs Support for Threads and Processes

RS agadaTh

MS-DOS ‘ 5 I

$] [¢]

multiple processes
one thread per process

JAVA RUNTIME

$ 8

oIme pProcess
multiple threads

333 583

multiple processes
multiple threads per process

Fldoe L@l

I------J-----

$ —imseruction wace | UNIX/ LINUX WINDOWS

Figure 4.1 Threads and Processes [ANDES7]

MS-DOS supports a single user process and a single thread process.

UNIX/ Linux supports multiple users and processes but with only one thread
per process.

A Java runtime environment supports one process with multiple threads.

Solaris, Windows family, OS/2 support multiple processes with multiple threads. %

L
Dr. Tarek Helmy, ICS-KFUPM 25 BSaagaann

[]
L LL W

RS agadaTh

Threads Life Cycle

Fldoe L@l

Y V

« Thread’s States:

— New: a thread is created by a process/thread using a command often called
spawn/fork/start.

— Running: doing the assigned job.

— Blocked: when a thread needs to wait for an 1/O event or asked to sleep for
some time.

— Dead: when a thread completes its job.

Termination of a process, terminates all threads within the process in windows.

There is no suspend state because all threads within the same process share the
same address space.

» Indeed: suspending a single thread involves suspending all threads of the same
process if they are of type user level threads.

Dr. Tarek Helmy, ICS-KFUPM

available

L L L OF

BOagaga0%h

Threads States

RS agadaTh

Ready queue

|
______ ‘ . ‘ STOE

.- Terminated

Fldoe L@l

Newly created
threads

- l O
-~ 7/
-

| start) s by ©
N slee
' Running “~_ PiNg

Currently executed ‘\
thread \ O

I/0 oper'a’rlon completes Waiting

- Waiting for I/O operation to complete

- Waiting to be notified

- Sleeping

- Waiting to enter a synchronized section

L L L OF

Dr. Tarek Helmy, ICS-KFUPM B agaaam

e Java’s Thread Life Cycle

Newly Created State
— Thread myThread = new MyThreadClass();
Runnable State
— After calling start() in which run() is executed myThread.start();
— Logically it is running, but physically it can be in one of the two states
* Running State (Physically running on CPU)
« Ready State (Waiting for its turn in the ready queue)
Blocked State
— Enters to Blocked State if the thread ...
 Calls an objects wait() method
« Calls sleep() method
» Waits for 1/O
— Exits from Blocked State if the thread ...

* |s waiting for an object, and on that object notify() or notifyAll() is
called.

* |s sleeping and the sleeping time elapsed.
* |s waiting for 1/O, and I/O is completed. public void run() {inti = 0;
* Dead State
— When finishes the run() process —~—_

Fldoe L@l

while (i < 100) { i++;
System.out.println ("i =" +i); }

— myThread.stop(); }

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 28 B agaaam

RS agadaTh

Thread State Diagram from the Parent Process point of view

Fldoe L@l

-

"

new CounterThread1(max);

Alive \

Object.wait()

Thread.sleep()
blocking IO call
waiting on a monitor

Dr. Tarek Helmy, ICS-KFUPM 29 B agaaam

run() method
returns

L L L OF

User-Level Threads (ULT)

RS agadaTh

« User-level thread management done by threads library in ¢ 8
the user space. The library provides support for thread \

Threads User

creation, scheduling. There is no support from the OS v Space
kernel. Kernel

Space

Fldoe LR

» Threads scheduling is application specific. The OS kernel

Is not aware of the existence of user’s level threads. @
Processor

« User’s level Thread switching does not require kernel
mode privileges (no mode switch). Process ~ Thread

« Blocking of any user’s level thread blocks the entire) \ /
process if the kernel is single threaded. \

 When a user-level thread makes a system call (e.g., User éé
reading a file from disk), the OS moves the process to space ¢
the waiting state and will not schedule it until the I/O has L_8)/__B
completed. Thus, even if there are other user-level threads
within that process, they have to wait, too. Ke”‘e'{ / end|

space

« User level threads are fast to create and manage. f \

° Examples user thread libraries: Runime ~ Thread Process
— Solaris 2 Ul-threads, Mach C-Threads, pthreads, etc...

system table table

FFEfL L O

Dr. Tarek Helmy, ICS-KFUPM 30 B agaaam

msaad
Highlight

msaad
Highlight
What does single threaded mean?

User’s Level Threads Library

RS agadaTh

e The threads-support library in the user’s space contains code

for:
— Creating and destroying threads.
— Passing messages and data between threads.
— Scheduling threads for execution.
— Saving and restoring thread contexts.

Fldoe L@l

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 31 B agaaam

Kernel Activity for ULTs

RS agadaTh

« The kernel is not aware of user’s level thread activity but it is still
managing the parent process activity.

Fldoe L@l

« When a user’s level thread makes a system call, the whole

process will be blocked.

« But for the thread library, that thread is still in the running state.

So thread states are independent of process states.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 32 B agaaam

developer
Highlight
How the thread is running after making system call? should it be blocked?

Advantages and Disadvantages of ULT

L L L RSN

a

2| - Advantages - Disadvantages

4 — Thread switching does — If one ULT makes a

5 not involve the OS kernel: system call, the OS

a no mode switching kernel blocks the process.

So all threads within the

Il be blocked.
— Scheduling can be process will be blocke

application specific:

choose the best — The kernel can only
algorithm. assign processes to
processors. Two threads
within the same process
cannot run
simultaneously on two
processors. (less
concurrency and
parallelization)

— ULTs can run on any OS.
Only needs a thread
library to be installed
(more Portable)

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 33 B agaaam

Fldoe LR

RS agadaTh

Kernel-Level Threads (KLT)

Supported and managed by the OS

Kernel (slower to create).

No thread library but an API (l.e. system
calls) to the OS kernel thread facility.

OS Kernel maintains the the process and

T
L
[

User

the threads.

Switching between threads requires the OS
kernel involvement.

Scheduling on a thread basis (another
thread can be scheduled in case of a
system call by others).

Examples OS support KLT:
- Windows ...

- Solaris

- Tru64 UNIX

- Linux

Dr. Tarek Helmy, ICS-KFUPM

Space
Kernel
Space

Processor

Process Thread
Kernel E g
—
Process Thread
table table
34 B agaaunm

L L L OF

Advantages and Disadvantages of KLT

RS agadaTh

. Advantages « Disadvantages

— Thread switching within the
same process involves the
OS kernel.

— The kernel can
simultaneously schedule
many threads of the same
process on many processors
(good for multiprocessor
environment)

Fldoe L@l

— There are 2 mode switches
per thread switch:

o » User to kernel
— Blocking is done on a thread

level not on the process
level.

 Kernel to user.

— This results in a significant
slow down the performance.

— Kernel routines can be
multithreaded.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 35 B agaaam

RS agadaTh

Combined ULT/KLT Approaches

Fldoe L@l

Dr.

To get the advantages of ULTs and KLTs, modern OSs support the existence
of both levels to be managed.

Special type of processes called Lightweight processes (LWP) will be created
to support the mapping of ULTs into KLTs.

We will discuss next three ways of the mapping process.

Process 1 Process 2 Process 3 Process 4 Process 3

CITE 5| (25 3|8 f][F 5 ¢ ¢
wser | [[S b [<]
3 & SREd SDRED SONE> D

Kernel

I P I P P P P
Hardware
5 User-level thread @ Kernel-level thread @ Light-weight Process E Processor

Tarek Helmy, ICS-KFUPM 36 O aaaam

L L L OF

e Multithreading Models

How do user’s and kernel’s threads map into each other?

. Many-to-One

Fldoe L@l
[]

. One-to-One

. Many-to-Many

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 37 B agaaam

Many-to-One Model

RS agadaTh

. Used on OSs that do not support multiple User thread
kernel’s level threads.

. Many user’s level threads mapped to a single
kernel’s level thread.

Fldoe L@l

. Many-to-One allows a developer to create as
many threads as s/he likes, but only one kernel
thread can be scheduled at a time.

Advantages:

. Thread management is done in user space, so it
IS easy.

Disadvantages

. The entire process will block if one thread
makes a blocking system call.

. Because only one thread can access the kernel
at a time, multiple threads are unable to run in
parallel on multiprocessors.

- Example: Solaris Green Threads work this way:. Kernel thread

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 38 B agaaam

One-to-One Model

RS agadaTh

* Used on OSs that support multiple
kernel’s level threads.

« Each user’s level thread maps to a
kernel’s level thread.

 Examples: Windows Family
Advantages:

* Provides more concurrency than many-
to-one model by allowing another
thread to run when one thread makes a
blocking system call.

» It allows multiple threads to runin - - — - +_ ———— @ - —— — — - - -
parallel on multiprocessors. -’- ’_ -’
Disadvantage:
* Creating a user’s level thread requires
creating a corresponding kernel’s level
thread which can affect the
performance of the system.

User threads

Fldoe L@l

Kernel threads

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 39 B agaaam

Many-to-Many Model

RS agadaTh

« Allows many user’s level threads to be

User threads

mapped to many kernel’s level threads.

« The number of threads may be specific to

Fldoe L@l

either a particular application or a particular
machine e.g. an application may be allocated
more kernel threads on a multiprocessor
machine than on a single processor machine.

 Allows the OS to create sufficient number of
kernel threads.

« Many kernel’s level threads can run in parallel,

 When a user level thread makes a system

call, the kernel can schedule another thread
for execution. ‘
- Examples: Solaris 2, Windows Family, IRIX,
HP-UX and Tru64. kernel threads

Dr. Tarek Helmy, ICS-KFUPM 40 B agaaam

L L L OF

Threads Issues

RS agadaTh

 Threads Scheduling: Which scheduling policy is used to schedule the
kernel threads?

— Scheduling means selecting a thread for running next.

Fldoe L@l

« Thread cancellation/terminating: When one thread returns a result,

the others should be cancelled or not?

« Threads pool: How many Kernel Threads does the OS create?

— Is it beneficial to create threads in advance and pool them for further assignment?

« Signal handling: How does a parent process notify its threads that an

event has occurred and which thread is going to respond?

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 41 O agJa0m

Kernel Threads Scheduling

RS agadaTh

« Preemptive priority scheduling policy is used to schedule the kernel threads:
— Each thread is given a global priority number.

— Highest priority thread gets the CPU (preemption may occur, it means the
CPU can be taken away from the thread if more higher priority thread is ready
for running).

— Round-robin based on the priority.
Preemption is_ essential in OS to be responsive with real-time threads.
« Example 1: Single Processor (Two Threads)
— Thread A (high priority), B (low priority), but A is waiting for a resource held

by B.
— When B releases the resource that thread A is waiting (sleeping) for.

— Thread B gives/preempts up CPU to allow thread A to run.
« Example 2: 2 Processors (Three Threads)
— Thread A (high priority), B (medium priority), C (low priority), but B is
waiting for a resource held by A.

— Threads A and C are running on CPUs, thread B_waiting on resource owned
by thread A.

Fldoe L@l

— Thread A releases the resource .
Signal thread C to give up the CPU so thread B can run.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 42 O agJa0m

Priority Inheritance/lnversion
ESaaaah

» Priority scheduling problem: a high priority thread is blocked for a resource
held by a low priority thread, which means it cannot get the CPU cycles to
run while a medium priority thread is running!!!

Fldoe L@l

« Example:
— Thread C (low priority) holds resource M.
— Thread B (medium priority) takes CPU.
— Thread A (high priority) blocks on M (held by C).

— So the execution returns to B: that means B runs for along time!

— A'is locked out of CPU for a long time, even though it is the highest
priority thread!

« Solution: Priority inheritance/Inversion
— Since A blocks on M (waiting for C), C gets (inherits) A’s priority.
— C will do its job and releases M then A gets its highest priority back

— A can run now.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 43 B agaaam

S Threads Cancellation

« Cancellation: means terminating a target thread before finishing its job.

« Cancellation of a target thread may occur in 2 different scenarios:

— Asynchronous/Unsafe cancellation: terminates the target thread

Fldoe L@l

immediately. (windows platform supports safe and unsafe cancelation)

— Safe cancellation: allows the target thread periodically to check if it should
be cancelled or not, If yes, terminate itself normally.

. In some OSs, termination of a process terminates all threads within the
process. (Unix/Linux platform supports safe cancelation)

« Think about the following scenarios:

1. Two threads searching a DB and one thread returns the result, the remaining

threads might be canceled without causing any troubles (safe cancelation).

2. When a user presses the stop bottom in the browser process then the thread

loading the page is canceled (causes a problem (unsafe cancelation).

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 44 O agJa0m

developer
Highlight

developer
Highlight

Difficulties with Asynchronous/Unsafe Cancellation

RS agadaTh

 Difficulty with asynchronous/unsafe cancellation:

— Canceling the thread while it is in the middle of updating data shared with
other threads.

Fldoe L@l

Canceling a thread asynchronously
— May cause inconsistency of the global variable’s values.

— May not free a necessary system-wide resources.

Global variable, i.e. if counter = 0 is a shared global variable.

Thread 1 does increment counter++ without updating the global value.

Thread 2 does decrement it counter--// “at the same time”

What is the order of counter’s values ?
— 0:1:07?
— 0:-1:07?

Shared resources, i.e. a file is shared between two threads

— One thread closed the file while the other one is reading from it.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 45 B agaaam

Threads Pool

RS agadaTh

« The server process creates a number of threads at the process start up and
places them in a pool where they wait for work or can be used in the many to
many mapping mode.

Fldoe L@l

— When a server receives a request, assigns it to a thread from the pool.

— Once a thread finishes its service, it returns to the pool and waits for a
work again.

— That means, no need to create a new thread for every client request, it
can be taken from the pool quickly.

Server Process Task Queue
- (@@@@© — O —l

thread thread thread

mrad — [AIS][OIIZ[O]O

Completed Tasks \
-~ «— O

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 46 B agaaam

Threads Pool

RS agadaTh

« If the pool is empty, the up coming request waits until one becomes free.

« The server process dynamically adjusts the number of threads in the pool
[optimize memory use] based on some factors such as:

— The number of CPUs in the system,
— The amount of physical memory,
— Expected number of client requests.

Fldoe L@l

« Advantages:

— Slightly faster to serve a request with an existing thread than creating a
new thread. Avoiding the overhead of creating a new thread.

— Allows the number of threads in the pool to be dynamic.

« Disadvantages:

— Creating too many threads randomly in one machine can cause the
system to run out of memory and even crash.

Dr. Tarek Helmy, ICS-KFUPM 47 O agJa0m

— Thread pools improve resource utilization through concurrent execution.

L L L OF

Threads Pool Implementation
L LR SR

Every thread looks
for tasks in the

Fldoe L@l

queue
|| ”kﬁ o
' | wait ()
Task Queue I b
T
T Qs Empty Worker Threads

All the worker threads wait for tasks

Dr. Tarek Helmy, ICS-KFUPM 48 B agaaam

L L L OF

Threads Pool Implementation

RS agadaTh

Fldoe L@l

Task Queue

\

|

\
‘ A-synchronized" model:
“Launch and forget"

Dr. Tarek Helmy, ICS-KFUPM

Worker Threads
1

The number of worker threads
Is fixed. When a task is inserted
to the queue, notify is called

49 BOagaann

L L L OF

RS agadaTh

Threads Pool Implementation

Fldoe L@l

Task

Task Queue notify()

Worker Threads

I

The number of worker threads
Is fixed. When a task is inserted
to the queue, notify is called

Dr. Tarek Helmy, ICS-KFUPM 50 B agaaam

L L L OF

Threads Pool Implementation

ERSaaaan

a

4

o

-

: The task will be assigned to a thread in the pool

. 7\
()

Task Queue \ /

Worker Threads

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 51 B agaaam

Threads Pool Implementation

BRGS0

"

a

. |

o |

: The task is executed by the thread

‘ A\
,)

Task Queue | /

Worker Threads

The remaining tasks are executed by the other threads

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 52 B agaaam

Threads Pool Implementation

BRGS0
'
a
. |
o |
: When a task ends, the thread is released
a
)
Task Queue ‘ J
Worker Threads

/While the Q is not empty, take the task from
the Q and run it (if the Q was empty, wait()

would have been called)
N\ J

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 53 B agaaam

RS agadaTh

Threads Pool Implementation

Fldoe L@l

A new task is executed by the released thread

Task Queue

Dr. Tarek Helmy, ICS-KFUPM

\

o4

J

Worker Threads

BOagaga0%h

L L L OF

Ch 4: Multi-Threading Programming
S aaaah

* Processing Modes in the OSs. (i.e. Uni-, concurrent-, multi-, parallel-processing,
multithreading, multiprocessing with multithreading, etc..)

* Threads Definition

« Thread’s Control Block

 What does a thread share with the parent process?

» Benefits of Threads vs. Processes

« Examples of Multithreaded Processes (i.e. Modern OS kernels, Web servers, word
processor, browsers, DB servers, ..etc.)

« Single-Threaded virus Multi-threaded Programming Assignment
« Summary of Threads vs. Processes
« OSs Support for Threads and Processes
 Thread’s Life Cycle
+ User’s and Kernel’s Level Threads (advantages and disadvantages)
 Combining ULT and KLT Models
— Many-to-One, One-to-One, Many-to-Many
« Threading Issues: Threads Scheduling, Thread Cancellation, Threads Pool,
— Priority Scheduling, and Priority Inversion/Inheritance Mechanisms
— Threads Signaling
* Threading in Different Platforms:
— Java-Threads, Linux-Threads, Windows-Threads, Solaris-Threads, P-Threads, etc.

Fldoe L@l

Dr. Tarek Helmy, ICS-KFUPM 5 WG aaamm

L L L OF

Fldoe L@l

Dr. Tarek Helmy, ICS-KFUPM 56 B agaaam

RS agadaTh

Signal Handling

Signals are used in OS to notify a process/thread that a particular event has
occurred.

All signals follow the same pattern:

— The signal is generated due to the occurrence of a particular event.
— The generated signal is delivered to a thread or a process.

— Once delivered, the signal must be handled.

A signal may be received either synchronously or asynchronously:

— Depending upon the source and the reason for the event being
signaled.

Asynchronous signal: The process/thread does not know ahead of time

exactly when a signal will occur. i.e. a running program performs illegal
memory access or division by zero.

Synchronous signal: The process/thread knows ahead of time exactly

when a signal will occur, i.e. expiration of assigned CPU time.

L L L OF

Signal Handling

RS agadaTh

« Signals can be sent by:

— The OS kernel to a process/thread.

Fldoe L@l

— One process to another process.
— A process to its threads.
« Signals may be handled by one of two possible handlers:
— A default signal handler.
— A user-defined signal handler [overriding the default one]

 When a process/thread receives a signal, it may perform one of the
following:

— Ignores the signal.

— Performs the default operation.

— Catches the signal (perform the user defined operation).

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 57 B agaaam

Signal Delivering

RS agadaTh

* In single-threaded programs
— Straightforward: deliver the signal to the thread.

* In multiple-threaded programs

Fldoe L@l

— Deliver the signal to every thread in the process. or

— Deliver the signal to certain threads in the process. or

— Assign a specific thread to receive all signals for the process.
* In Windows Os for example:

— Windows OS does not explicitly provide support for signals, but it
emulates the signals using Asynchronous Procedure Calls (APCSs).

— APC is straightforward and is delivered to a particular thread in that
process.

— The APC facility allows a user thread to specify the thread that is to be
called when the user thread receives notification for a particular event.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 58 B agaaam

RS agadaTh

Java-Threads

Fldoe L@l

Dr. Tarek Helmy, ICS-KFUPM 59 B agaaam

Java threads are implemented by the JVM but their behavior is heavily
iInfluenced by the underlying OS and its characteristics.

They do not fall under the category of either ULT or KLTs.

The actual scheduling policy is OS-dependent, and determined together by
the host OS and the JVM implementation.

Java offers concurrency mechanisms as a built-in part of the language:
— Built-in class Thread, with the run method as its "main"

— Synchronized methods, and synchronized code blocks

— Monitor locks and condition (wait) queues

— Thread priorities

Green threads exist only at the user-level and are not mapped to multiple
kernel threads by the operating system.

“Native/kernel threads" are the threads that are provided by the native OS.

Native threads can realize the performance enhancement from parallelism
(multiple CPUSs).

Java is naturally multi-threaded and because of this the underlying OS
implementation can make a substantial difference in the performance of your
application.

L L L OF

developer
Highlight

developer
Highlight

Linux-Threads

RS agadaTh

 From the Linux OS point of view, there is no concept of a thread.
* Linux implements all threads as standard processes.
— Linux does not distinguish between processes and threads

« The Linux kernel does not provide any special scheduling semantics or data
structures to represent threads.

* Instead, a thread is merely a process that shares certain resources with
other processes.

« Linux uses the concept of task rather than threads and processes.

« Each thread has a unigue task_struct and appears to the kernel as a normal
process.

« Linux provides kernel-level tasks:

— Tasks are created with the clone() system call and all scheduling is done
in the kernel.

Fldoe L@l

« Clone() allows a child task to share the address space of the parent task.

— The flags provided to clone() command help specify the behavior of the
new process and detail what resources the parent and child will share.

— l.e. clone_files, clone _newns (share files, or name space)

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 60 B agaaam

developer
Highlight

Solaris2-Threads
S agaaa%

« Solaris 2 is a version of UNIX with support for threads at the kernel
and user levels and real-time scheduling.

* [t implements the Pthread API in addition to supporting user-level
threads with library of API for creation and management.

* Process includes the user’s address space, stack, and process
control block

« User-level threads (threads library)

— Invisible to the OS

— Are the interface for application parallelism
« Kernel threads

— The unit that can be dispatched on a processor and it’s
structures are maintain by the kernel

» Lightweight processes (LWP)

— Each LWP supports one or more ULTs and maps to exactly one
KLT

Fldoe L@l

— Each LWP is visible to the application

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 61 B agaaam

Solaris2-Threads

RS agadaTh

1. It defines an intermediate level of threads between kernel and user levels
called Light Weight Processes [LWP].

2. Each process contains at least on LWP

Fldoe L@l

3. The thread library multiplexes user level threads on the pool of LWPs

—}—— user-level thread

| lightweight process

kernel thread

Task 2 is equivalent to a pure KLT approach
We can specify a different degree of parallelism (Task 1 and 3)

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 62 O agJa0m

Decomposition of ULT Active State

RS agadaTh

e When a ULT Is active, it is associated to a LWP and thus to a KLT.

« Transitions among the LWP states is under the exclusive control of
the OS kernel.

Fldoe L@l

« A LWP can be in the following states:
— Running: assigned to CPU = executing

— Blocked because the KLT issued a blocking system call (but the
ULT remains bound to that LWP and remains active)

— Runnable: waiting to be dispatched to CPU

— Stopped: e.g. waiting for synchronization event

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 63 B agaaam

Windows-Family-Threads

RS agadaTh

* Implements the Win32 API, it is the primary API for MS OS family, it uses the
one-to-one mapping.

« Each thread contains
- Thread id

- Reqister set

Fldoe L@l

- Separate user and kernel stacks
- Private data storage area used by dynamic Link Libraries (DLL).
The primary data structure of Windows thread includes:

« TEB [thread environment block], contains thread identifier, user stack and
thread local storage.

- ETHREAD [executive thread block], contains thread start address and pointer
to the corresponding KTHREAD.

« KTHREAD [kernel thread block], contains scheduling and synchronization
information and the kernel stack.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 64 B agaaam

R p—— Windows-Family-Threads

« Threads are scheduling using a priority-based preemptive scheduling
using a dispatcher

Fldoe L@l

« 32 priority levels
— 1-15: Variable class
— 16-31: Real time
— 32: Dispatcher
— Idle thread is executed if no other thread is ready

— Interactive tasks can get up to 3 scheduling quantum over time

sharing applications.

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 65 B agaaam

P-Threads

RS agadaTh

« Traditional Unix's are multi-tasking OSs.
« UNIX permits a user to run multiple processes with single thread per each simultaneously.

« Each process has its own address space, with its own copies of its variables, which are
completely independent.

* This independence, while providing memory protection and therefore stability, causes
problems when you want to have multiple processes working on the same task/problem.

» The cost of switching between multiple processes is relatively high.
* For these reasons, and others, threads or Light Weight Processes (LWP) can be very useful.

 Threads share a common address space, and are often scheduled internally in a process,
thereby avoiding a lot of the inefficiencies of multiple processes.

* Avery popular API for threading an application is Pthreads, also known as POSIX threads

« The Pthread library describes general thread behavior, and the functions which control
threads.

« Libraries implementing Pthreads specification are restricted to Unix-based systems such as
Solaris 2.

« Pthread library should be included
« Some Pthread attributes include:
— Athread has a priority for scheduling
« Threads may use several scheduling methods, some of which use priority.
— A thread may have local or global scope of contention

* It may compete with all threads in the system for CPU time, or it may compete only
with threads in the same task (process).

Fldoe L@l

L L L OF

Dr. Tarek Helmy, ICS-KFUPM 66 B agaaam

S aagaah

Flo Lol

Dr. Tarek Helmy, ICS-KFUPM

The End!!

67

Boagaaank

FF L L L

